
1

Efficient Auto-Tuning of Parallel Programs with
Interdependent Tuning Parameters via Auto-Tuning
Framework (ATF)

ARI RASCH and RICHARD SCHULZE, University of Muenster, Germany

MICHEL STEUWER, University of Edinburgh, United Kingdom

SERGEI GORLATCH, University of Muenster, Germany

Auto-tuning is a popular approach to program optimization: it automatically finds good configurations of a

program’s so-called tuning parameters whose values are crucial for achieving high performance for a par-

ticular parallel architecture and characteristics of input/output data. We present three new contributions of

the Auto-Tuning Framework (ATF), which enable a key advantage in general-purpose auto-tuning: efficiently

optimizing programs whose tuning parameters have interdependencies among them. We make the following

contributions to the three main phases of general-purpose auto-tuning: (1) ATF generates the search space

of interdependent tuning parameters with high performance by efficiently exploiting parameter constraints;

(2) ATF stores such search spaces efficiently in memory, based on a novel chain-of-trees search space structure;

(3) ATF explores these search spaces faster, by employing a multi-dimensional search strategy on its chain-

of-trees search space representation. Our experiments demonstrate that, compared to the state-of-the-art,

general-purpose auto-tuning frameworks, ATF substantially improves generating, storing, and exploring the

search space of interdependent tuning parameters, thereby enabling an efficient overall auto-tuning process

for important applications from popular domains, including stencil computations, linear algebra routines,

quantum chemistry computations, and data mining algorithms.

CCS Concepts: • General and reference → Performance; • Computer systems organization → Paral-

lel architectures; • Software and its engineering → Parallel programming languages;

Additional Key Words and Phrases: Auto-tuning, parallel programs, interdependent tuning parameters

ACM Reference format:

Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. 2021. Efficient Auto-Tuning of Parallel

Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF). ACM Trans. Archit.

Code Optim. 18, 1, Article 1 (January 2021), 26 pages.

https://doi.org/10.1145/3427093

This is a new paper, not an extension of a conference paper.

Authors’ addresses: A. Rasch, R. Schulze, and S. Gorlatch, University of Muenster, Muenster, Germany; emails:

{a.rasch, r.schulze, gorlatch}@uni-muenster.de; M. Steuwer, University of Edinburgh, Edinburgh, United Kingdom; email:

michel.steuwer@glasgow.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1544-3566/2021/01-ART1

https://doi.org/10.1145/3427093

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3427093
mailto:permissions@acm.org
https://doi.org/10.1145/3427093
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3427093&domain=pdf&date_stamp=2021-01-20

1:2 A. Rasch et al.

1 INTRODUCTION

High performance for parallel programs is difficult to achieve, because program code has to be

optimized for different target architectures and for changing input/output characteristics (size,

dimensionality, transposition layout, etc.) [63]. Typically, there are many parameters that influence

a program’s performance in different ways, such that finding the optimal parameter configuration

is often a hardly manageable task even for experts.

Auto-tuning is a technique for automatically finding good values of a program’s performance-

critical parameters (a.k.a. tuning parameters), e.g., the number of threads and/or sizes of tiles, for

a given architecture and input/output characteristics. Usually, the auto-tuning process consists of

three major phases: the generation, storing, and exploration of the program-specific search space,

which consists of all possible parameter configurations.

There have been several successful special-purpose auto-tuning approaches, with an overview

in [5]. They achieve impressive results for particular application classes on particular target ar-

chitectures, by taking advantage of domain-specific knowledge to efficiently generate, store, and

explore the program-specific search space. Notable examples of special-purpose auto-tuners are

ATLAS [69] and PATUS [12], where auto-tuning is used for optimizing linear algebra routines on

CPU architectures or for high-performance stencil computations on CPUs and GPUs, respectively.

Unfortunately, the implementation of a special-purpose auto-tuner is a cumbersome task. The

developer has to manually manage the generation and storing of the parameter configurations,

and tailor a search technique (like genetic algorithms or simulated annealing [70]) to the param-

eters’ search space for its automatic exploration. Special-purpose auto-tuning becomes especially

challenging when parameters have interdependencies among them, e.g., when the value of one pa-

rameter must be divisible by the value of another parameter. Such divisibility properties are often

required for tuning parameters of recent parallel applications; e.g., in order to correctly exploit the

thread and memory hierarchy of modern architectures, as we discuss later in this article. Design-

ing a special-purpose auto-tuner for such interdependent parameters requires expert knowledge

and a significant implementation effort from the auto-tuning developer. We demonstrate that gen-

erating and storing the search spaces of interdependent tuning parameters is time-consuming and

memory-intensive, and that the structure of such spaces significantly impacts the exploration ef-

ficiency of state-of-the-art search techniques. The demand for higher productivity in auto-tuning

has been recently identified as a major research challenge in high-performance computing [5, 6].

Our work is inspired by the alternative approach, general-purpose auto-tuning, with the classi-

cal approaches Orio [19] and ActiveHarmony [65], followed by the current state-of-the-art frame-

works OpenTuner [2] and CLTune [41], and the most recent libtuning [46] and KernelTuner [66]

approaches. General-purpose auto-tuning aims at simplifying the auto-tuning process: the soft-

ware developer specifies a program’s tuning parameters by their names and ranges of possible

values, and the general-purpose framework then automatically creates the corresponding special-

purpose auto-tuner that generates, stores, and explores the program-specific search space.

The existing general-purpose auto-tuning approaches are efficient for many applications on a

range of architectures; however, we demonstrate in this article that they still struggle with pro-

grams whose tuning parameters have interdependencies among them: the existing approaches ei-

ther keep invalid configurations within their search spaces, which often hinders search techniques

from finding well-performing configurations (like Orio, OpenTuner, and libtuning), or the ap-

proaches have difficulties with efficiently generating, storing, and exploring the search spaces of

recent parallel applications that consist of only valid configurations (like ActiveHarmony, CLTune,

and KernelTuner).

We present three new contributions of our Auto-Tuning Framework (ATF) to address the

discussed weaknesses in state-of-the-art general-purpose auto-tuning for programs with

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:3

interdependent tuning parameters. The ATF framework was originally introduced in previous

work—as both an offline [49] and an online [50] approach1—where its user interface and

convenient usage are presented, based on prototype mechanisms for search space generation,

storing, and exploration. In contrast, we introduce in this article, new contributions of ATF to

each particular phase of the auto-tuning process:

(1) ATF generates the search space of interdependent parameters with higher perfor-

mance than the current general-purpose auto-tuners by efficiently exploiting parameter

constraints;

(2) ATF stores the generated search space of such parameter more efficiently in memory by

relying on a novel chain-of-trees search space structure for representing these spaces;

(3) ATF explores the generated and stored space of interdependent parameters faster

by employing a multi-dimensional search strategy on its chain-of-trees search space

representation.

Our experiments confirm that ATF substantially improves the state of the art in general-purpose

auto-tuning (including ATF’s former, prototype implementation [49, 50]), based on four popular

application case studies: (1) stencil computation Gaussian Convolution, (2) linear algebra routine

General Matrix-Matrix Multiplication, (3) quantum chemistry computation Coupled Cluster, and

(4) data mining algorithm Probabilistic Record Linkage.

The rest of the article is structured as follows. Section 2 briefly recapitulates the state of the art

in general-purpose auto-tuning. Sections 3, 4, and 5 introduce our novel mechanisms for generat-

ing, storing, and exploring the search spaces of interdependent tuning parameters, and Section 6

illustrates the user interface of the ATF, which implements our novel mechanisms. Our experi-

mental evaluation is described in Section 7. We discuss related work in Section 8, and we conclude

in Section 9.

2 STATE-OF-THE-ART GENERAL-PURPOSE AUTO-TUNING APPROACHES

We briefly recapitulate the state of the art in general-purpose auto-tuning: OpenTuner and

libtuning in Section 2.1, and CLTune and KernelTuner in Section 2.2. Classical approaches Ac-

tiveHarmony and Orio are discussed in Section 8.

2.1 Auto-Tuners Designed Toward Independent Tuning Parameters

OpenTuner and libtuning are auto-tuning frameworks designed and optimized toward applica-

tions, whose tuning parameters have no interdependencies among them. This restriction enables

both approaches to rely on only straightforward mechanisms for search space generation, storing,

and exploration: the user specifies tuning parameters by their name and range of possible values,

and, per design, each possible combination of parameters’ values is considered by the auto-tuner

as a valid configuration within the search space. Therefore, explicitly generating and storing the

entire search space is not required in these approaches, because configurations can be generated

straightforwardly, on the fly, by arbitrarily combining parameters’ values, and storing these spaces

requires only storing parameters’ ranges that have a small memory footprint. Furthermore, search

techniques can be easily used for exploring these systems’ search spaces: the spaces have rect-

angular shapes where each dimension of the space represents the range of a particular tuning

parameter; this enables straightforwardly mapping the spaces to a coordinate space—a collection

1Online auto-tuning happens at runtime so that it can be based on runtime values (e.g., the input size), while offline auto-

tuning works at compile time and uses static parameters only [5].

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:4 A. Rasch et al.

of equally sized sequences of real numbers, for which numerical search techniques are specifically

designed and optimized [70].

While auto-tuning systems for independent parameters work well for many applications, they

struggle with programs whose tuning parameters have interdependencies among them. This is

because arbitrarily combining the values of interdependent parameters can lead to invalid pa-

rameter configurations which cannot be distinguished in OpenTuner and libtuning due to their

inherent design (the user has to manually set a penalty value for invalid configurations, as a

workaround [45]). Consequently, the tuners’ spaces contain also invalid configurations which are

often inefficient: we demonstrate for important parallel applications that often >99.999% of con-

figurations within their search spaces are invalid due to parameters’ interdependencies, which

hinders state-of-the-art search techniques from finding well-performing configurations.

2.2 Auto-Tuners Designed Toward Interdependent Tuning Parameters

CLTune and KernelTuner are popular auto-tuners that take interdependencies among tuning pa-

rameters into account. For this, the frameworks generate, store, and explore on the constrained

search space which contains valid configurations only so that their search techniques do not have

to struggle with invalid configurations. For example, we show in Section 7 that using the con-

strained search space, it is possible to find well-performing configurations for important appli-

cations (e.g., stencil computations and linear algebra routines) in a reasonable 4h of tuning time,

in which search techniques explore up to 20,000 valid configurations in the constrained space. In

contrast, when relying on the unconstrained search space which contains also invalid configura-

tions (as in OpenTuner and libtuning), it is not possible to even find a valid starting point within

the space—independent of the chosen search technique—in 4h exploration time (in which, e.g.,

OpenTuner tested up to 190,000 configurations). This is because the unconstrained search space

often contains a vast amount of invalid configurations.

CLTune and KernelTuner are efficient for many applications; however, both approaches rely on

the same, straightforward processes to search space generation, storing, and exploration, which are

inefficient for the large spaces of recent parallel applications: the two approaches use a naive search

space representation which straightforwardly enumerates all valid configurations within a one-

dimensional array; we demonstrate that such a representation causes a large memory footprint and

hinders the efficiency of state-of-the-art search techniques, because exploration can be performed

in only one dimension. Furthermore, the two approaches generate these spaces based on a so-

called search space constraint which has to be checked also for all invalid configurations; this is

inefficient when the number of invalid configurations is large.

3 GENERATING CONSTRAINED SEARCH SPACES

We address the first phase of auto-tuning by introducing a novel generation algorithm for con-

strained search spaces: we recapitulate ATF’s parameter constraints in Section 3.1, and we show

how we efficiently exploit ATF’s constraint design for fast search space generation in Section 3.2.

3.1 Parameter Constraints

A key concept in auto-tuning is a tuning parameter. Typically, a tuning parameter pi is represented

by a pair containing the parameter’s name and a range which specifies the parameter’s possible

values:

pi := (〈name〉, 〈range〉).
ATF extends this traditional definition of a tuning parameter by adding to it a parameter constraint:

pi := (〈name〉, 〈range〉, 〈constraint〉).

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:5

A parameter constraint may be any arbitrary, unary, Boolean C++17 function [23] that takes as

input an element of its parameter’s range; values for which the function returns false are filtered

out of the range.

Parameter constraints enable expressing arbitrary interdependencies among tuning parameters

and consequently to avoid invalid configurations within the search space. For this, the constraint

function of a parameter pi may use in its definition all previously defined tuning parameters pj ,

j < i , as common C++ variables that have the same type as their corresponding range values, e.g.,

type int in the case of a tuning parameter pj whose range consists of integers. For example, in

OpenCL—the standard for uniformly programming different kinds of parallel architectures—the

number of threads in a group (local size) has to divide the overall number of threads (global size),

and the global size usually has to be smaller than or equal to the input size N to avoid idling

threads. To express this, we use the following Boolean unnamed C++ functions as constraints for

the global and local size tuning parameters, where % denotes the modulo operator:

// global size parameter constraint
[](int global_size){ return global_size <= N; }

// local size parameter constraint
[](int local_size){ return global_size % local_size == 0; }

The constraint function of the local size parameter uses the global size parameter global_size in its

body, thus expressing the interdependency among these two parameters. We discuss the definition

and usage of parameter constraints in ATF’s user interface in more detail in Section 6.

For comparison, a search space constraint in CLTune and KernelTuner that is equivalent to the

ATF’s two parameter constraints above is [41, 66]

[](auto c){ return c.local_size * c.k <= N; }

A search space constraint has to be defined as a single function (with drawbacks discussed in the

next subsection). In this example, the constraint takes as input a configuration c comprising tuning

parameters local_size and k; the global_size is then computed as local_size * k.

Note that ATF’s parameter constraints are as expressive as the traditional search space con-

straints: a search space constraint that is equivalent to a set of parameter constraints can always

be generated by combining the parameter constraints via logical and. Moreover, [49, 50] show

that ATF’s user interface (based on parameter constraints) provides a better user experience as

compared to the interfaces of CLTune (which relies on search space constraints) and OpenTuner

(which supports no constraints at all).

In the following, we show how we exploit ATF’s constraint design for fast search space gener-

ation.

3.2 Algorithm for Generating Constrained Search Spaces

We first briefly present the traditional generation algorithm for constrained search spaces as used

in CLTune and KernelTuner, which is based on search space constraints. Afterwards, we intro-

duce our novel algorithm for generating constrained search spaces, which is based on parameter

constraints.

Traditional Approach. Listing 1 shows as pseudocode the original search space generation algo-

rithm of CLTune and KernelTuner (taken from [41] and [66]), which is based on a search space con-

straint and the traditional definition of tuning parameters. Configurations are added to the search

space (line 8 in Listing 1) if the search space constraint sc (line 6) is satisfied. We use the C++ syn-

tax for range-based for-loops, where ri denotes the range of the i-th tuning parameter (lines 2–4).

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:6 A. Rasch et al.

A major drawback of the traditional approach is that the search space constraint (line 6) has to be

checked at the deepest level of the loop nest, causing high search space generation time.

Listing 1. Traditional algorithm (pseudocode) for generating constrained search spaces [41, 66].

Novel Approach. Listing 2 shows as pseudocode our optimized algorithm for generating con-

strained search spaces, which relies on parameter constraints, rather than on search space con-

straints as in the traditional approach. Compared to Listing 1, our algorithm in Listing 2 exploits

ATF’s constraint design to make two major optimizations: (1) generating independently and in

parallel the search space parts of groups of interdependent tuning parameters, and (2) checking

constraints early in the loop nest. We discuss both optimizations in the following.

Listing 2. Novel algorithm (pseudocode) for generating constrained search spaces.

Optimization 1: In general, not all tuning parameters depend on each other. For example, in

recent CPU and GPU implementations [51], e.g., for stencil computations and linear algebra

routines, up to 39 parameters are used (as we discuss in Section 7); these parameters can be

partitioned into differently sized groups of interdependent tuning parameters; e.g., six parameter

groups in the case of stencil commutations, which comprise up to four parameters in a group. We

exploit ATF’s constraint design to automatically identify interdependent parameter groups: two

parameters are interdependent and thus in the same group, iff one of them occurs in the syntax

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:7

tree of the other parameter’s constraint function. In the following, let G1, . . . ,Gn be the disjoint

grouping of interdependent parameters, where each group G comprises kG tuning parame-

ters: G = {pG
1 , . . . ,p

G
kG
}, pG

i = (nG
i , r

G
i ,pc

G
i < nG

1 , . . . ,n
G
i−1 >), 1 ≤ i ≤ kG ; here, < nG

1 , . . . ,n
G
i−1 >

denotes that constraint pcG
i may use all previously defined tuning parameters (as discussed

above). In Listing 2, for each group G, we generate its corresponding part of the search space

independently of the other group’s parts (line 2). This breaks the deep loop nests in Listing 1,

leading to significantly faster space generation, as we confirm later in our experiments. Moreover,

as the groups’ search space parts can be generated independently of each other, we can generate

them in parallel (indicated by keyword parallel in line 2).

We use a further potential of parallelism in Listing 2 by generating a group G’s first tG for-

loops also in parallel (lines 4–6 in Listing 2); here, tG denotes an arbitrary, user-defined constant

between 1 and kG . We set tG to a default value of tG = 1, i.e., we parallelize only the first loop of the

nest (line 4) because, in most cases, this is sufficient for high parallelization: the first parameter’s

range usually comprises more values than cores available in the target system’s CPU. However,

in special cases, if the first tuning parameter has a small range (e.g., a Boolean parameter), we set

tG to a higher value, and consequently parallelize more loops in the nest, in order to fully utilize

the available hardware. To avoid a parallelization overhead which might be high even for tG = 1

if the first parameter’s range is large, our parallel implementation uses a thread pool comprising

as many threads as cores are available in the target CPU.

Synchronization is not required in our parallel algorithm, because the subspaces of different

groups (accessed via function group in line 14 of Listing 2) and the subspaces of a group G’s

first tG parameters (added via add_par) are disjoint.

Note that in general, groups of interdependent parameters cannot be identified automatically

when using a traditional search space constraint as in CLTune and KernelTuner: by design, pa-

rameters’ interdependencies are defined in a single search space constraint only, thus requiring a

complicated semantic analysis of the constraint.

Optimization 2: In the traditional algorithm, constraints must be checked at the deepest level of

the loop nest, because the algorithm relies on a search space constraint which checks full configu-

rations (line 6 in Listing 1). In contrast, ATF’s constraint design enables checking constraints early

in the loop nest, thereby avoiding iterations over entire subspaces (Listing 2, lines 5–12), which

substantially accelerates search space generation.

4 STORING CONSTRAINED SEARCH SPACES

In this section, we address the second phase of auto-tuning: storing the space of configurations,

which is generated according to the first phase described in Section 3. If tuning parameters have

no interdependencies, as assumed by OpenTuner and libtuning, then their search space can be

represented straightforwardly using only the ranges of the tuning parameters (as discussed in

Section 2.1), because each combination of values in parameters’ ranges represents a valid con-

figuration. In contrast, representing a constrained search space in the case of interdependencies

among the parameters is significantly more complex, because not all configurations of parameters

are valid.

CLTune and KernelTuner address this problem of interdependent parameters by generating and

storing in memory a priori the entire constrained search space. This allows search techniques to

freely navigate over the space, as required by the techniques for high search efficiency [70]. How-

ever, both approaches store the space in a plain array of configurations, which wastes a significant

amount of memory space, because many configurations share the same parameter values.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:8 A. Rasch et al.

Fig. 1. The example chain-of-trees represents the search space of parameters p1, . . . ,p5.

To efficiently store constrained search spaces in memory, we introduce the novel chain-of-trees

search space structure. This structure chains multiple trees, where each tree represents the search

space part of a group of interdependent tuning parameters, as defined in the previous section.

We explain our chain-of-trees search space structure for a simple, illustrative example of five

tuning parameters:

p1 := (n1, {22, 35}, _),

p2 := (n2, {2, 5, 7, 11}, divides(n1)),

p3 := (n3, {26, 51}, _),

p4 := (n4, {1, 3, 13, 17}, divides(n3)),

p5 := (n5, {27, 39, 52, 54, 68}, equals(n3 + n4)).

Here, for an easy distinction, the parameters’ ranges comprise different values, and p1

and p3 have no constraints. We use divides(N) as an alias for the parameter constraint

[](int i) {return N % i == 0;}, and we use equals(N) for the constraint [](int i){return N == i;}.

There are two groups of interdependent parameters in the example; the first group comprises pa-

rameters {p1, p2}, while parameters {p3, p4, p5} form the second group.

Figure 1 illustrates our chain-of-trees structure for the example parameters p1, . . . ,p5. For each

of the two parameter groups, we use a tree (Tree 1 and Tree 2) to represent its part within

the search space, and we chain these two trees by connecting the leaves of the first tree with

the root of the second tree. To save memory, we store the connecting (dashed) edges as a single

reference in Tree 1. Each path in Tree 1 from the root to a leaf represents a valid configuration

of parameters p1 and p2, for which their constraints are satisfied, and each combination of a path

in Tree 1 and a path in Tree 2 represents a valid, full configuration.

In our chain-of-trees structure, parameter values are often stored only once, whereas in a plain

array of configurations (as in CLTune and KernelTuner), these values would be repeated many

times. For example, we store values 22 and 35 only once at the top level of Tree 1 while these

would be stored 20 times in the traditional space representation (once per configuration in the

search space), resulting in a high memory footprint. Furthermore, the configurations of parame-

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:9

ters p3, p4, p5, which are represented by Tree 2, would have to be stored for every leaf of Tree 1
(four times in this example). We avoid this significant waste of memory by storing Tree 2 only

once and chaining the two trees together.

Note that our chain-of-trees structure is efficient also for storing the spaces of parameters with-

out interdependencies: if tuning parameters are independent, then each single parameter rep-

resents its own interdependent parameter group (comprising only one parameter), which cor-

responds to exactly the same range-based search space representation as used in OpenTuner

and libtuning.

5 EXPLORING CONSTRAINED SEARCH SPACES

The third and final phase of auto-tuning is the exploration of the search space, generated and

stored as described in Sections 3 and 4, using some search technique. State-of-the-art general-

purpose auto-tuning frameworks follow one of two basic approaches to the exploration phase.

CLTune and KernelTuner explore constrained search spaces, but they use a plain array of con-

figurations. Consequently, they provide search techniques and only one-dimensional view on the

search space, which often causes sub-optimal auto-tuning results, because locality information

within the space’s particular dimensions are lost [70]. For example, we demonstrate in Section 7

for the search by simulated annealing—CLTune’s most efficient search technique [41]—that the

selection time of the next candidate point is very high for large search spaces when relying on the

one-dimensional space, thus leading to poor auto-tuning results.

OpenTuner and libtuning retain the multidimensionality of their search spaces, as required by

search techniques for high search efficiency [70]. However, these two frameworks have to explore

unconstrained search spaces which can contain also invalid configurations. This usually drasti-

cally worsens their efficiency for programs with interdependent tuning parameters, as we confirm

experimentally in Section 7.

We aim at combining the advantages of both state-of-the-art approaches: we explore constrained

search spaces (as in CLTune and KernelTuner), and we search in multiple dimensions (as in Open-

Tuner and libtuning). For this, we exploit the structure of our chain-of-trees search space repre-

sentation introduced in the previous section.

As search techniques usually explore coordinate spaces (i.e., spaces containing equally sized

sequences of real numbers that have no interdependencies among them), our basic idea for ex-

ploration is as follows: we map a coordinate space to our chain-of-trees representation; thereby,

we reduce the challenge of exploring a chain-of-trees to the challenge of exploring a coordinate

space—the most efficient structure for search techniques [70]. For a chain-of-trees with L levels

(excluding the roots), we map to it a coordinate space with L dimensions. For each dimension in

the coordinate space, we use real numbers in the interval (0, 1]—all points from 0 to 1, excluding 0.

We denote the coordinate space as (0, 1]L .

Figure 2 demonstrates an example of how we map a coordinate space to our chain-of-trees

structure. For illustration, we use a chain-of-trees with four levels, i.e., L = 4 (roots excluded); cor-

respondingly, we use a four-dimensional coordinate space for mapping it to the four-leveled chain-

of-trees. The goal of our mapping is to assign to each arbitrary sequence (l1, . . . , l4) ∈ (0, 1]4 in

the coordinate space a path in the chain-of-trees (and thus a configuration; see Section 4), which

we do intuitively as follows. In level 1, the chain-of-trees has four nodes, so in the first dimension

of the coordinate space, we split interval (0, 1] evenly into four equally sized blocks, where each

block corresponds to one node in the chain-of-tree’s first level. In our example, we map each l1 in

block (0, 0.25] to the root’s first child 1©, and if l1 is in block (0.25, 0.5], we map it to the root’s

second child 2©, and so forth. In level 2, after moving along the path (s1) which comprises only

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:10 A. Rasch et al.

Fig. 2. Example of exploring our chain-of-trees structure in multiple dimensions, based on an L-dimensional

coordinate space (in this example, L = 4). Subtrees in level 1—for nodes 2, 3, 4—are omitted for brevity.

node s1 = 1©, we have three nodes, so each l2 ∈ (0, 0.33] is mapped to s1’s first child node 5©, and

each l2 ∈ (0.33, 0.66] is mapped to the second child node 6©, and so on.

In general, for an arbitrary L-leveled chain-of-trees, we map an L-dimensional coordinate space

to this chain-of-trees as follows. Each sequence (l1, . . . , lL) ∈ (0, 1]L in the coordinate space is

mapped to a path (s1, . . . , sL) in the chain-of-trees. To obtain node si , 1 ≤ i ≤ L, we calculate ki :=

�li ∗ NUM_CHILD(s1, ... ,si−1)	, where NUM_CHILD(s1, ... ,si−1) is the number of child nodes of si−1 after

moving along the path (s1, . . . , si−1). We round up ki to the next higher integer value (indicated

by �. . .) and set si as the ki -th child of node si−1.

6 USER INTERFACE OF ATF

While this article focuses on ATF’s contributions in generating, storing, and exploring constrained

search spaces, ATF has also a further major goal: simplifying the auto-tuning process to make it

appealing to common application developers, which is the focus of previous work [49, 50]. For

example, [49] shows that ATF’s user interface simplifies the auto-tuning process for the user as

compared to frameworks OpenTuner and CLTune: the ATF user annotates the program’s source

code with easy-to-use tuning directives which specify the tuning parameters (with their names,

ranges, and possible constraints), the search technique, and the abort condition; ATF then auto-

matically creates the corresponding special-purpose auto-tuner for generating, storing, and ex-

ploring the program-specific search space. In contrast, the users of OpenTuner and CLTune have

to implement a low-level auto-tuning program in Python or C++, correspondingly.

Listing 3 shows how ATF is used for auto-tuning a popular example used in many auto-tuning

case studies [13, 27, 34, 41, 53, 64, 66]—the OpenCL GEMM kernel of the CLBlast library [40],

which computes general matrix-matrix multiplication on either CPU or GPU. The kernel, declared

in lines 24 and 25, has 16 tuning parameters, e.g., the SIMD vector width VMW (line 5), the number

of threads per thread group MDIMC (line 8), and the tile size MWG (line 12). The atf::tp directive spec-

ifies the tuning parameters for ATF with a name, range, and (optionally) a parameter constraint.

The constraints express, e.g., that the local size MDIMC has to be less than or equal to the maximally

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:11

Listing 3. ATF directives for auto-tuning CLBlast’s GEMM routine (some parameters omitted for brevity).

hardware-supported thread size atf::ocl::max_wi_size_0 (line 10), and that the tile size MWG has to be

a multiple of the local size MDIMC multiplied with the vector width VWM (line 14), which is an interde-

pendency among these three parameters. Here, less_than_or_eq(x) and multiple_of(x) are so-called

constraint aliases which ATF provides for user’s convenience; they are automatically replaced by

ATF with the constraint functions [](auto i) {return i < = x;} and [](auto i){ return i % x == 0;},
respectively. The two functions take as input an element i of parameter’s range, and they return

either true or false, indicating whether the constraint is satisfied or unsatisfied for range element

i. The auto specifier represents a generic type in ATF, allowing the user to use constraint aliases for

differently typed tuning parameters. ATF provides several constraint aliases, and it allows the user

to specify arbitrary, self-defined constraints as unnamed C++17 functions (lambda expressions).

Further in Listing 3, the search technique and abort condition, i.e., when to stop the auto-tuning

process, are specified in lines 18 and 19. ATF provides special directives for OpenCL programmers

(omitted for brevity in the listing) to automatically generate the host code in which the user can

set, e.g., the target device and kernel’s input parameters (line 21). ATF provides various search

techniques, e.g., simulated annealing and AUC bandit which combines multiple techniques for

exploration (such as differential evolution, Nelder-Mead, and Torczon hillclimbers) [49]. ATF also

offers further tuning directives, e.g., for auto-tuning programs written in arbitrary programming

languages and for arbitrary tuning objectives (e.g., high runtime performance and/or low energy

consumption). We do not discuss ATF’s supported search techniques and its further directives,

because this is the focus of previous work [49, 50].

7 EXPERIMENTAL EVALUATION

All experiments described in this section can be reproduced using our artifact implementation [4].

In the following, after describing our experimental setup in Section 7.1, we introduce four ap-

plication case studies in Section 7.2 which we use for experiments in this section. Afterwards, in

Section 7.3, we compare ATF which implements our novel mechanisms for search space gener-

ation (Section 3), storing (Section 4), and exploration (Section 5)—the three main contributions

of this article—against the state-of-the-art competitors. In Section 7.4, we experimentally analyze

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:12 A. Rasch et al.

Table 1. Auto-Tuning Characteristics of Our Four Application Studies

App. Input Size #TPs TP Groups Min. RS Max. RS Med. RS Avg. RS |SP | FT

1 CONV 4,096 × 4,096 14
{1, 1, 2, 2,
4, 4} 2 4,092 4,092 2,339.29 1.69 ∗ 108 1.49 ∗ 10−23

2 GEMM 10 × 500 × 64 19
{1, 1, 2, 3,
4, 4, 4} 2 500 10 121.84 2.51 ∗ 108 2.47 ∗ 10−17

3 CCSD(T)
24 × 16 × 16 ×
24 × 16 × 16 ×
24

39
{1, 1, 2, 4, 4,
4, 4, 4, 4, 4, 7} 2 24 16 15.46 8.81 ∗ 1018 1.47 ∗ 10−25

4 PRL 1,024 × 1,024 14 {1, 1, 2, 2, 4, 4} 2 1,024 1,024 586.14 2.31 ∗ 107 1.33 ∗ 10−19

ATF regarding each particular phase of the auto-tuning process. Finally, we discuss in Section 7.5

ATF’s auto-tuning efficiency for further application classes, and we present in Section 7.6 ATF’s

efficiency for a real-world deep learning application.

7.1 Experimental Setup

We use a system equipped with an Intel Xeon Gold 6140 18-core CPU, tacted at 2.3 GHz with 192 GB

main memory and hyper-threading enabled, and a NVIDIA Tesla V100-SXM2-16GB GPU. Time

measurements are made using the C++ chrono library and the OpenCL profiling API, respectively.

7.2 Application Case Studies for Experiments

Our experiments rely on four case studies: (1) Gaussian Convolution (CONV), which is a popu-

lar stencil computation, (2) GEneral Matrix-Matrix multiplication (GEMM), which is a linear alge-

bra routine, (3) Coupled Cluster (CCSD(T)), which is important in quantum chemistry [14], and

(4) Probabilistic Record Linkage (PRL), which is widely used in data mining [52]. We use the recent

CPU and GPU implementations of these four applications presented in [51], and we show experi-

mentally that when using ATF for auto-tuning, these implementations can be auto-tuned to better

performance than current state-of-practice solutions, e.g., Facebook’s TensorComprehensions li-

brary [67], which relies on state-of-the-art polyhedral techniques combined with a special-purpose

auto-tuner, as well as hand-optimized vendor libraries such as Intel MKL/MKL-DNN [21, 22] and

NVIDIA cuBLAS/cuDNN [42, 44] for linear algebra routines and stencil computations, respectively.

The implementations in [51] are written in OpenCL in order to target different kinds of architec-

tures, and they rely on multiple tuning parameters, including sizes of tiles and numbers of threads

on different memory and core layers. The parameters have various interdependencies among them,

e.g., the value of a tile size tuning parameter on an upper memory layer has to be a multiple of

a tile on a lower memory layer—an interdependency among the tile size parameters–because a

lower-layer tile is a chunk of an upper-layer tile. We refer the reader to [51] for more details about

the tuning parameters and their corresponding interdependencies, as this is not the focus of this

article.

Relevant for the evaluation in this article are the auto-tuning characteristics of our four stud-

ies, which are summarized in Table 1: (1) number of tuning parameters (denoted as #TPs in the

table); (2) number of groups of interdependent tuning parameters, as defined in Section 3, and the

groups’ individual sizes (TP Groups); (3) minimum parameter range size (Min. RS); (4) maximum

parameter range size (Max. RS); (5) median parameter range size (Med. RS); (6) average parame-

ter range size (Avg. RS); (8) size of the constrained search space (|SP|); and (9) fraction (FT) of the

unconstrained search space that represents valid configurations. For example, application CONV
has 14 tuning parameters which are automatically split by ATF into six groups of interdependent

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:13

parameters: two groups comprising one parameter, two groups comprising two parameters, and

two groups comprising four parameters. Characteristics Min. RS, Max. RS, Med. RS, Avg. RS, |SP|,
and FT depend on the particular input size of the applications, because the input size is used to

calculate the upper bound of some of the tuning parameters’ ranges. For example, the range of the

tile size tuning parameter is defined as all values between 1 and the input size [51]. In the table, we

present values of the input-dependent characteristics for the same input sizes as also used in [51],

e.g., real-world sizes taken from deep learning. For example, for input size 4,096 × 4,096, CONV’s

parameters have a minimum range size of 2 (a Boolean parameter) and a maximum range size

of 4,092 (tile size); CONV’s median range size is 4,092, and on average, the ranges of CONV’s tun-

ing parameters contain 2,339.29 values. The constrained search space of CONV (which comprises

only valid configurations, as in ATF, CLTune, and KernelTuner) has a size of 1.69 ∗ 108 for input

size 4,096 × 4,096. The FT value (1.49 ∗ 10−23 in this example) denotes which fraction of the un-

constrained search space represents valid configurations. For example, the unconstrained search

space of CONV has a size of 1.13 ∗ 1031 and only a fraction of 1.49 ∗ 10−23 of configurations within

the space (= 1.69 ∗ 108 many) are valid.

Table 1 shows that our case studies have very different auto-tuning characteristics, thus enabling

a thorough evaluation of the ATF framework.

7.3 Comparison of Auto-Tuning Efficiency

We compare the auto-tuning efficiency of ATF which implements our novel mechanisms presented

in Sections 3–5 to the auto-tuning efficiency of (i) OpenTuner which is designed for programs

whose tuning parameters have no interdependencies; (ii) CLTune which supports interdependen-

cies among tuning parameters; and (iii) ATF’s former implementation [49, 50] which relies on pro-

totype mechanisms for search space generation, storing, and exploration. For brevity, we do not

present our experimental results for the general-purpose auto-tuning frameworks libtuning and

KernelTuner, because our results for them are analogous to those that we obtain for OpenTuner

and CLTune: the same as OpenTuner, libtuning is optimized toward programs whose tuning pa-

rameters have no interdependencies, and KernelTuner relies on exactly the same mechanisms for

search space generation and storing as CLTune. Thus, even though libtuning and KernelTuner
use other kinds of search techniques than OpenTuner and CLTune, both have difficulties with

auto-tuning our case studies for the same reasons as OpenTuner and CLTune.

Additionally, we compare the performance of our application case studies auto-tuned using

ATF against the newest versions of state-of-practice, high-performance computing libraries that

use their own optimized implementations of these applications: (a) Intel MKL-DNN 0.21.5/MKL
2020 [21, 22] and NVIDIA cuDNN 7.6.5/cuBLAS 10.2 [42, 44] which are architecture-specific ap-

proaches for high-performance convolution computations and linear algebra routines on CPU

and GPU, respectively; the libraries rely on hand-optimized assembly code, rather than auto-

tuned OpenCL programs as we do; (b) Conv2D and CLBlast [40, 41] which are auto-tunable

OpenCL implementations of convolution and matrix multiplication, respectively, for CPUs and

GPUs; both implementations rely on CLTune for auto-tuning, which is specifically designed and

optimized toward auto-tuning these two implementations [41]; (c) TensorComprehensions [67]

and COGENT [29] which are recent approaches optimized toward efficiently computing CCSD(T)
on NVIDIA GPUs; TensorComprehensions generates its own CCSD(T) implementation based on

state-of-the-art polyhedral techniques, and it is tightly coupled to a self-provided, special-purpose

auto-tuner; COGENT generates CUDA code for CCSD(T) that relies on hand-crafted heuristics for

optimization, rather than auto-tuning; and (d) the hand-optimized, parallel Java implementation of

PRL for multi-core CPU that is currently used by EKR [20]—the largest cancer registry in Europe.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:14 A. Rasch et al.

Table 2. Auto-Tuning Efficiency of ATF vs. State-of-the-Art Auto-Tuners and High-Performance Libraries

on CPU (Left Part of the Table) and GPU (Right Part) for Application Studies: CONV (Gaussian

Convolution), GEMM (GEneral Matrix-Matrix Multiplication), CCSD(T) (Coupled Cluster), and PRL
(Probabilistic Record Linkage)

Table 2 shows the measured runtimes of our four case studies on CPU (left part of the table)

and GPU (right part) when auto-tuned using ATF, compared to auto-tuning the application stud-

ies using the existing general-purpose auto-tuners listed above. We auto-tune each of our four

studies for 4 h with each auto-tuning framework; the studies are denoted in the table as ATF,

OpenTuner, CLTune, and CLTune (pruned) which is CLTune with an expert-pruned search space,

and ATF (former) which is ATF’s prototype implementation [49, 50]. For a fair comparison, we

conduct each tuning run 10 times, and we present for each framework the results of the best run.

High-performance libraries that rely on their own implementations of our application studies are

also presented in the table and highlighted in italic.

In addition to the runtimes of the application studies, we present in Table 2 for each framework

and library also (i) the time required for generating a study’s search space, (ii) the search space

size for each particular study, (iii) the number of valid configurations explored in the 4h of

tuning time for each study, and (iv) the number of invalid configurations explored. Note that

ATF, CLTune, and ATF (former) explore only valid configurations, but at the cost of the search

space generation time. In contrast, OpenTuner relies on the unconstrained search spaces and

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:15

thus, it requires no search space generation time; however, at the cost of invalid configura-

tions within its search space. The high-performance libraries Intel MKL-DNN/MKL and NVIDIA

cuDNN/cuBLAS (for CONV and GEMM), as well as libraries COGENT (for study CCSD(T)) and EKR (for

PRL) do not rely on auto-tuning; therefore, they do not generate or explore search spaces. The

TensorComprehensions library uses internally a domain-specific, special-purpose auto-tuner

which explores valid configurations only. To make comparison more challenging for ATF, we use

for TensorComprehensions a tuning time of 12h, rather than 4h as for ATF. Note that we cannot

report the search space size of TensorComprehensions, because the size is not listed in its log files.

We observe in Table 2 that frameworks OpenTuner, CLTune, and ATF (former) have difficulties

with auto-tuning most of our application studies. In the case of CLTune and ATF (former), this

is because they require a too high search space generation time, which we discuss and analyze

in detail in the next subsection. OpenTuner cannot find a single valid configuration in the tuning

time of 4h, in all 10 tuning runs per particular application, because it relies on the unconstrained

search space which contains too many invalid configurations.

For CLTune in Table 2, we use also a hand-pruned search space (denoted as CLTune (pruned)
in the table), because pruning is usually required in CLTune for generating its search spaces

in adequate time [41]. To generate the pruned CLTune search spaces, we use exactly the same

restricted ranges of tuning parameters that are recommended by the CLTune experts [41]: range

{1, 8, 16, 32} for the number of threads on different layers, rather than the parameters’ complete

range {1, . . . ,N } which we use for ATF, where N is the input size; for sizes of tiles, we use range

{1, 16, 32, 64, 128} instead of {1, . . . ,N }. For the further tuning parameters of our four studies, the

CLTune experts provide no pruning recommendations; thus, to avoid missing well-performing

values in these parameters’ ranges, we use for them the original, unrestricted ranges which we

also use for ATF. We observe in Table 2 that search space pruning enables CLTune to generate

its search space in acceptable time. For example, for application CONV, CLTune (pruned) needs

1.227s to generate CONV’s search space, while without pruning, CLTune needs >4h. However,

pruning severely affects applications’ performance: slowdowns ranging from 1.06× (for PRL)

to up to >104× (for CONV) when comparing CLTune (pruned) to ATF on GPU. This is because

pruning by hand is a complex task and thus, it often excludes well-performing configurations out

of the search space, even when using the pruned parameter ranges recommended by the CLTune

experts. For example, for application CONV on GPU, ATF determines as optimal number of threads

the (counter-intuitive [43]) value of 372, which is not represented in CLTune’s recommended,

hand-pruned ranges. ATF is able to find such counter-intuitive parameter values, because

classification of configurations in well-performing and not well-performing is left entirely to ATF

(without relying on the programmer for hand-pruning).

As compared to high-performance libraries, we observe in Table 2 that ATF auto-tunes our ap-

plications to better performance. In the case of MKL-DNN, MKL, cuDNN, cuBLAS, COGENT, and EKR,

this is because we rely on auto-tuning for the particular input size, while the libraries use hand-

crafted heuristics optimized toward average high performance over different sizes; thereby, the

libraries avoid the time-intensive process of auto-tuning for the particular size. However, as we

demonstrate in Section 7.6, auto-tuning for the input size is well amortized in many application

areas [63], e.g., deep learning, where the same sizes are reused in each program run.

High-performance libraries Conv2D and CLBlast in Table 2 provide their own, auto-tunable

OpenCL implementations that rely on CLTune for auto-tuning. In contrast to these two libraries, we

achieve better performance by auto-tuning with ATF the implementations provided in [51]; these

implementations have larger search spaces than Conv2D and CLBlast and thus, they enable a

more fine-grained optimization for the target architecture and input/output characteristics (this

is discussed in detail in [51]). The larger spaces in [51] cannot be generated using CLTune (as

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:16 A. Rasch et al.

Fig. 3. Search space generation time (lower is better) of ATF vs. ATF’s former implementation [49, 50], Con-

straint Solver (CS) [39], and CLTune [41] for our four case studies using different square, power-of-two

input sizes. We use a logarithmic scale on the y-axis: seconds (s), hours (h), months (m), centuries (c). When

search space generation time exceeds 12 h, we use a theoretically computed generation time (highlighted as

a dashed line). For study CCSD(T), we cannot present the search space generation time of CLTune and CS,

because CLTune requires >12h generation time for each input size of CCSD(T), and CS crashes due to large

memory footprint. CS also crashes for other applications on large sizes because of its large memory footprint.

confirmed in Table 2), because CLTune relies on a straightforward search space generation process

(discussed in Section 3).

In the following, we compare ATF to the state-of-the-art frameworks in terms of each particular

phase of the auto-tuning process.

7.4 Generating, Storing, and Exploring Constrained Search Spaces

This section experimentally evaluates ATF’s three main contributions presented in this article

(Sections 3–5) by measuring and assessing the search space generation time, the memory foot-

print, and the exploration efficiency of ATF for constrained search spaces as compared to CLTune

and ATF’s prototype implementation [49, 50]. In particular, we show that even when improving

search space generation in the state-of-the-art auto-tuning frameworks, which is one of their main

limitations (as discussed in the previous subsection), the approaches would still suffer from severe

weaknesses regarding search space storing and exploration.

Note that a comparison with OpenTuner and libtuning for generating/storing/exploring con-

strained search spaces is not possible, because both approaches rely on the unconstrained search

space (see Section 2.1), with the major drawbacks discussed in Section 7.2. We also refrain from

presenting our experimental results for KernelTuner, because it relies on exactly the same mech-

anisms for generating, storing, and exploring constrained search spaces as CLTune; thus, both

approaches achieve analogous results, even though KernelTuner uses other kinds of search tech-

niques.

Generating Constrained Search Spaces. Figure 3 reports the measured search space generation

time for our four application case studies when using ATF which implements our novel mecha-

nism for generating constrained search spaces (introduced in Section 3), compared to the search

space generation mechanisms of CLTune and ATF’s former implementation [49, 50]. In addition,

we compare also to a state-of-the-art constraint solver [39] which is designed for combinatorial

problems and thus can be exploited also for search space generation in auto-tuning. We show for

each application the generation time for different square, power-of-two input sizes. The generation

times are growing with the input sizes, because the sizes are used to calculate the upper bounds

for some of the tuning parameter ranges, e.g., tile size parameters. For each combination of appli-

cation and input size, we measure the search space generation times up to 12 h on our system. For

larger input sizes, the generation times of our competitors often exceed 12 h (e.g., in the case of

study CONV, for sizes 24, 25, . . .). In these cases, we report a theoretically computed generation time

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:17

(highlighted as dashed lines in Figure 3) which we compute based on the average times measured

for smaller input sizes.

We observe in Figure 3 that ATF generates constrained search spaces faster than its competitors,

by several orders of magnitude, already on small input sizes (note the logarithmic scale in the

figure). For example, CLTune requires >1h for generating the search space of CONV even for small

8 × 8 input images, while ATF requires only 21ms to generate the same space—a speedup of >105.

This is because CLTune relies on a naive search space generation algorithm (discussed in Section 3)

which iterates over the huge unconstrained search space containing more than 109 configurations

for 8 × 8 input images. In contrast, ATF uses our novel search space generation algorithm which

enables generating groups of interdependent parameters independently and in parallel (referred to

as Optimization 1 in Section 3), and ATF also checks constraints early in the search space generation

process (Optimization 2).

Compared to ATF’s prototype implementation [49, 50], our new search space generation algo-

rithm exploits parameter constraints for each particular parameter, while the former implemen-

tation of ATF used a proof-of-concept search space generation algorithm in which, for simplicity,

parameter constraints were checked for all parameters within a group at the group’s last param-

eter. This is sufficient for ATF’s initially targeted application class—BLAS routines on small input

sizes—and makes implementation in [49, 50] simpler, however, at the cost of a high search space

generation time for other important applications, as shown in Table 2.

In contrast to ATF’s former implementation, the constraint solver (CS in Figure 3) uses parameter

constraints for each particular parameter. However, the solver does not exploit parameter grouping

and parallelization (ATF’s Optimization 1), causing significantly higher search space generation

time than our novel space generation algorithm in ATF.

Asymptotic behavior differs over approaches, because ATF and the solver check constraints

early for each particular parameter, while ATF’s former implementation and CLTune check con-

straints late, for entire groups of parameters (ATF former) or simultaneously for all parameters

(CLTune).

Storing Constrained Search Spaces. We compare the memory requirements of the constrained

search space built by ATF which relies on its novel chain-of-trees structure (discussed in Section 4)

against CLTune and ATF’s former implementation for our four case studies using again different

square, power-of-two input sizes. CLTune and ATF’s former implementation rely on the same,

memory-intensive, one-dimensional search space representation. Consequently, both approaches

suffer from a memory crash for already quite small input sizes.

In the following, to make comparison challenging for ATF, we compute theoretically the min-

imum memory requirement of the one-dimensional search space representation in CLTune and

ATF’s former implementation for each particular combination of application and input size, as

follows. In both frameworks, the search space is a flat array of configurations which comprise

particular values of the tuning parameters (e.g., 14 parameters in the case of application CONV; see

column #TPs in Table 1). Each tuning parameter value has at least a size of 1 byte (usually more,

e.g., 4 byte in the case of an integer parameter); this results in the following minimum memory

requirement of the one-dimensional search space: |SP| * #TPs * 1 Byte. Here, |SP| denotes the

number of configurations within the space, which is equal to the search space size; #TPs denotes

the number of parameter values per configuration, which is equal to the number of tuning param-

eters. We compute |SP| for all applications and input sizes using ATF which (in contrast to CLTune

and former ATF) is capable of generating and storing large spaces.

In Figure 4, we observe for all four applications that our chain-of-trees search space represen-

tation in ATF requires significantly less memory than the one-dimensional space representation

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:18 A. Rasch et al.

Fig. 4. Memory footprint (lower is better) of ATF vs. CLTune [41] and ATF’s former implementation [49, 50]

(both rely on same search space representation) for our four application case studies using different square,

power-of-two input sizes. We use a logarithmic scale on the y-axis.

Fig. 5. Search space exploration efficiency (lower is better) of ATF vs CLTune [41] and ATF’s former im-

plementation [49, 50] (both rely on same search space representation) for our four application case studies

using search techniques Simulated Annealing (SA) and AUC bandit (AUC). We use a logarithmic scale on

the y-axis.

used in CLTune and former ATF (note the logarithmic scale in the figure). For example, appli-

cation CCSD(T)’s one-dimensional search space requires for input size 212 the prohibitively high

amount of >1019 GB (calculated according to the formula above), while ATF’s search space struc-

ture requires only 256KB for storing the same space—a memory consumption reduced by a factor

of >1022.

Exploring Constrained Search Spaces. Figure 5 shows the advantages of ATF’s multi-dimensional

exploration strategy (described in Section 5) over a one-dimensional strategy (as in CLTune and

ATF’s prototype implementation) drawn as box plots. Each plot shows 10 runtimes of a particular

study, obtained after 10 independent auto-tuning runs of 4 h each. A box depicts the 25%–75% quar-

tiles, i.e., half of the configurations obtained after the 10 independent auto-tuning runs achieve a

runtime that lays within the box. The vertical lines connect for each study the runtime of the worst

auto-tuning run (i.e., the final configuration after 10 runs that achieves the least runtime) with the

runtime of the best run. We auto-tune all applications for NVIDIA Tesla V100 GPU using the in-

put sizes from Table 1. Note that different tuning runs usually find different final configurations,

because search techniques are not deterministic; for example, techniques usually start exploration

at a random configuration within the search space.

Figure 5 confirms that, when exploring a constrained search space in multiple dimensions (as

described in Section 5), by exploiting the structure of ATF’s chain-of-trees space representation,

we usually find better-performing parameter configurations in the same auto-tuning time (4 h in

the figure) as compared to the traditional, one-dimensional exploration strategy in CLTune and

ATF’s former implementation.

For the simulated annealing search—CLTune’s most efficient search technique [41]—we observe

considerably better tuning results for the multi-dimensional exploration strategy in ATF, compared

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:19

to exploration in only one dimension: an average speedup of 102×, i.e., we can improve the run-

time of our case studies on average by 102× when using ATF for 4 h of auto-tuning as compared

to auto-tuning the applications for 4 h using CLTune or the former ATF. This is because simu-

lated annealing requires a long time for selecting the next configuration when the search space

is one-dimensional and large [10]. When exploiting ATF’s chain-of-trees structure, we perform

exploration in multiple dimensions; in each dimension, we explore a corresponding level of the

chain-of-trees structure, rather than in the large search space. This allows more configurations to

be explored and results in better configurations being found in 4 h of tuning time.

We also observe in Figure 5 better exploration efficiency for the AUC bandit search—currently

one of the most efficient search techniques [2, 49]—when relying on ATF’s multi-dimensional ex-

ploration approach. This is because exploration in multiple dimensions enables better exploiting

locality information within space’s particular dimensions [70], which is especially beneficial for

large spaces, e.g., the space of CCSD(T).

Note that our chain-of-trees search space structure enables at least the same exploration effi-

ciency as the traditional exploration strategy in one dimension, for any search technique: search

techniques can straightforwardly access our chain-of-trees search space structure in a one-

dimensional fashion (exactly as in CLTune and ATF’s former implementation) by iterating over

the chain-of-tree’s leaves.

7.5 ATF for Further Application Classes

ATF has been already successfully used for auto-tuning applications from different important do-

mains [18, 31, 40, 48, 49, 51, 52, 58, 59]. For example, ATF (already in its prototype implementa-

tion [49, 50]) has proved to achieve tuning results of the same or even higher quality as Open-

Tuner and CLTune for their favorable application classes [49]: (i) GCC compiler’s optimization

flags [2] (favorable for OpenTuner), as an example application whose tuning parameters have no

interdependencies, and (ii) CLBlast library’s GEMM implementation [40] (favorable for CLTune)

whose tuning parameters have interdependencies among them.

Compared to OpenTuner, this is because GCC flags’ tuning parameters have no interdependen-

cies, causing both OpenTuner and ATF to generate, store, and explore the same (unconstrained)

search space, and because ATF provides (among others) the highly efficient AUC bandit search

technique [49] which is also used by OpenTuner for search space exploration. Consequently, both

OpenTuner and ATF achieve for GCC flags the same good auto-tuning results.

As compared to CLTune, ATF is able to auto-tune the CLBlast’s GEMM routine to better perfor-

mance than CLTune, by up to 17× (as shown in [49]), even though CLTune is specifically designed

toward auto-tuning this routine [41]. This is because the CLTune user has to massively hand-prune

the ranges of GEMM’s tuning parameters (i.e., remove valid values out of the ranges) in order

to generate CLTune’s search space in acceptable time. However, such pruning massively shrinks

GEMM’s search space, by factors >1000×, thereby usually losing well-performing configurations

within the space [49].

7.6 ATF for a Real-World Application

ATF can significantly speed up real-world applications that rely on compute-intensive kernels like

those discussed in Section 7.3. We demonstrate this for the real-world example siamese which is

used for handwriting recognition within the popular deep-learning framework Caffe [25].

Table 3 shows our performance analysis for siamese. We observe that GEMM is called in

siamese over 50 million times in total, on 25 input sizes (which remain fixed for different inputs of

siamese [25]). For computing GEMM on CPU, the siamese implementation in Caffe relies on the

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:20 A. Rasch et al.

Table 3. Auto-Tuning Efficiency of ATF for the siamese Neural Network (Runtimes in ms)

Intel Xeon Gold 6140 CPU NVIDIA V100 GPU

No.
Input Size num

calls
ATLAS
runtime

CLBlast ATF
cuBLAS
runtime

CLBlast ATF

runtime speedup
over ATLAS runtime speedup

over ATLAS runtime speedup
over cuBLAS runtime speedup

over cuBLASM N K

1. 50 64 500 8420128 0.2760 0.4720 0.58 0.0366 7.55 0.0133 0.0331 0.40 0.0061 2.17
2. 20 576 25 8420128 0.0848 0.1165 0.73 0.0281 3.01 0.0123 0.0213 0.58 0.0041 3.00
3. 20 576 1 8420128 0.0263 0.0539 0.49 0.0102 2.57 0.0061 0.0198 0.31 0.0041 1.50
4. 50 64 1 8420128 0.0038 0.0160 0.24 0.0025 1.54 0.0072 0.0199 0.36 0.0041 1.75
5. 500 64 50 6400000 0.2705 0.2147 1.26 0.0224 12.06 0.0082 0.0225 0.36 0.0061 1.33
6. 50 500 64 6400000 0.2668 0.2539 1.05 0.0455 5.86 0.0225 0.0224 1.00 0.0061 3.67
7. 20 25 576 6400000 0.0612 0.5655 0.11 0.0269 2.28 0.0143 0.0345 0.42 0.0061 2.33
8. 64 500 800 100002 1.1326 2.3305 0.49 0.1581 7.17 0.0195 0.0440 0.44 0.0195 1.00
9. 64 10 500 100002 0.0724 0.4678 0.15 0.0224 3.23 0.0133 0.0329 0.40 0.0061 2.17
10. 64 500 1 100002 0.0419 0.0652 0.64 0.0157 2.67 0.0061 0.0198 0.31 0.0041 1.50
11. 64 10 1 100002 0.0047 0.0109 0.43 0.0012 4.03 0.0061 0.0195 0.31 0.0041 1.50
12. 64 2 10 100002 0.0031 0.0176 0.18 0.0008 3.91 0.0123 0.0200 0.62 0.0041 3.00
13. 64 2 1 100002 0.0015 0.0095 0.16 0.0012 1.25 0.0072 0.0193 0.37 0.0041 1.75
14. 500 800 64 100000 1.0922 1.2813 0.85 0.0863 12.65 0.0123 0.0296 0.41 0.0164 0.75
15. 64 800 500 100000 1.1098 1.9104 0.58 0.0850 13.06 0.0174 0.0375 0.46 0.0215 0.81
16. 64 500 10 100000 0.0749 0.0889 0.84 0.0227 3.30 0.0133 0.0212 0.63 0.0041 3.25
17. 10 500 64 100000 0.0686 0.1517 0.45 0.0312 2.20 0.0184 0.0215 0.86 0.0051 3.60
18. 64 10 2 100000 0.0053 0.0122 0.43 0.0017 3.14 0.0072 0.0199 0.36 0.0041 1.75
19. 2 10 64 100000 0.0036 0.0218 0.16 0.0013 2.66 0.0174 0.0215 0.81 0.0041 4.25
20. 100 500 800 20200 1.5435 2.3467 0.66 0.2584 5.97 0.0256 0.0500 0.51 0.0256 1.00
21. 100 10 500 20200 0.0753 0.4875 0.15 0.0256 2.95 0.0133 0.0325 0.41 0.0061 2.17
22. 100 500 1 20200 0.0629 0.0687 0.92 0.0173 3.64 0.0061 0.0203 0.30 0.0041 1.50
23. 100 10 1 20200 0.0073 0.0141 0.52 0.0017 4.21 0.0072 0.0197 0.36 0.0041 1.75
24. 100 2 10 20200 0.0049 0.0279 0.18 0.0017 2.87 0.0113 0.0200 0.56 0.0041 2.75
25. 100 2 1 20200 0.0025 0.0125 0.20 0.0011 2.18 0.0072 0.0201 0.36 0.0041 1.75

ATLAS library [69] which uses a self-provided special-purpose auto-tuner for optimization; for

GEMM on GPU, siamese uses the hand-optimized NVIDIA cuBLAS library which we discussed in

Section 7.3. Alternatively to ATLAS and cuBLAS, the Caffe user can optionally choose the CLBlast

library (also discussed in Section 7.3), which relies on CLTune for auto-tuning.

Table 3 shows that the siamese application requires for computing GEMM on CPU via ATLAS

in total 2.1 h, which makes up 53% of siamese’s total runtime on CPU (3.9 h); on GPU, siamese re-

quires 10 min for GEMM via cuBLAS, which is 83% of siamese’s total GPU runtime (13 min). How-

ever, when replacing ATLAS and cuBLAS by the ATF-optimized GEMM implementation in [51]

(which we discussed in Section 7.3), we can speed up siamese’s total runtime by 1.78× on CPU (to

2.2 h) and by 1.85× on GPU (to 7 min). This is because ATF is capable of auto-tuning the GEMM

implementaiton in [51] to higher performance than ATLAS and cuBLAS, by up to 13× on CPU and

4× on GPU, as shown in Table 3.

ATF achieves better performance than ATLAS, because ATLAS relies on small search spaces

and ignores correlations among tuning parameters by auto-tuning parameters independently of

each other; most likely, this is done in ATLAS to simplify the auto-tuning process which would

otherwise require similar mechanisms as presented for ATF in this article. Compared to cuBLAS,

our better performance is because we rely on auto-tuning for the particular input size, while

cuBLAS uses hand-crafted heuristics optimized toward average high-performance over various

sizes, thereby avoiding the auto-tuning overhead. However, auto-tuning is an amortized one-time

overhead in many application areas. For example, in siamese, the same 25 input sizes (listed in

Table 3) are reused in each program run, such that auto-tuning becomes an acceptable one-time

overhead per target architecture only.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:21

8 COMPARISON TO RELATED WORK

Auto-tuning approaches can be classified into two major categories: (1) special-purpose systems

which are designed toward a particular application class (e.g., linear algebra routines or stencil

computations), and (2) general-purpose frameworks which target a broad range of arbitrary (pos-

sibly emerging/upcoming) application classes.

Special-purpose auto-tuning has proved to achieve impressive tuning results for important ap-

plications, e.g., FFT [16], DSP [47], chemistry computations [7], linear algebra [33, 69], self-adaptive

architectures [24], geophysics [55], code mapping [35], multi-GPU systems [54], hardware synthe-

sis [9], compiler optimization [15, 17, 32], code variant tuning [37, 61, 62], networks-on-chip [28],

stencil computations [12, 36], resource virtualization [68], loop optimization [11], shared memory

multiprocessors [57], load balancing [71], threading models [26, 56], machine learning [30], graph

analytics [1], dynamic parallelism [60], and execution policies [8]. However, special-purpose auto-

tuning severely hinders programmer’s productivity, because a special-purpose auto-tuner has to

be designed and implemented for each particular application class.

The alternative approach, general-purpose auto-tuning, aims at tackling the productivity is-

sue by providing the programmer with a general framework for conveniently generating special-

purpose auto-tuning systems. The currently popular general-purpose auto-tuning frameworks are

OpenTuner [2], CLTune [41], KernelTuner [66], and libtuning [46]. These approaches generate

efficient special-purpose auto-tuners for applications whose tuning parameters are either indepen-

dent of each other (OpenTuner and libtuning) or have small ranges (CLTune and KernelTuner).

However, the approaches have weaknesses regarding auto-tuning recent parallel applications for

state-of-the-art architectures, because such applications rely on interdependent tuning parameters

with large ranges. OpenTuner and libtuning often fail for such applications because, by design,

they assume tuning parameters to be independent of each other. In contrast, CLTune and Kernel-

Tuner are designed toward interdependent tuning parameters, but they struggle with large ranges

for such parameters, because they rely on straightforward mechanisms for generating, storing, and

exploring the search spaces of such parameters. The weaknesses of the state-of-the-art general-

purpose approaches are discussed in Sections 3–5 and shown experimentally in Section 7.

Classical approaches for general-purpose auto-tuning of programs with interdependent tun-

ing parameters are ActiveHarmony [65] and Orio [19, 38]. ActiveHarmony uses for generating

its constrained search space the constraint solver that we discussed in Section 7.4. However, Ac-

tiveHarmnoy suffers from similar high search space generation time as CLTune whose time is

higher than the time we present for the solver in Figure 3. This is because ActiveHarmony inter-

nally relies on search space constraints, similarly as CLTune, thereby hindering the solver from

achieving its full performance potential (which is still lower than ATF’s efficiency for search space

generation, as shown in Figure 3). Furthermore, ActiveHarmony suffers from high memory foot-

print and a time-intensive search space exploration process. This is because ActiveHarmony uses

search techniques to explore the unconstrained search space and whenever an invalid configu-

ration is found, it maps the configuration to a valid configuration in its (previously generated)

constrained search space based on A pproximate Nearest Neighbor (ANN) search [3]. However,

ANN has two major drawbacks when used in auto-tuning: (1) high memory footprint: for d tuning

parameters and a search space size of n, ANN requires O(d·n) memory space, similarly as CLTune,

while ATF’s memory footprint is usually substantially less (Figure 4); (2) time-intensive initial-

ization: ANN requires additional, significant initialization time, of O(d·n·log(n)), for preparing

its internal data structures. In contrast to ActiveHarmnony, we introduce an exploration strategy

for ATF toward directly exploring the constrained search space, based on our novel chain-of-trees

search space structure from Section 4, thereby avoiding the memory and time-intensive process

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

1:22 A. Rasch et al.

of ANN. The other classical approach Orio supports interdependent parameters by exploring the

unconstrained search space (similarly as OpenTuner and libtuning) and setting a penalty value

for invalid configurations; thereby, Orio avoids generating and storing the entire search space [38]

as inherently required by our ATF approach (as well as CLTune and KernelTuner). However, by

relying on the unconstrained search space, Orio suffers from the same weaknesses as discussed

and experimentally shown in this article for OpenTuner and libtuning.

We present the ATF which addresses the weaknesses in state-of-the-art general-purpose auto-

tuning for programs with interdependent tuning parameters. ATF was originally introduced in

previous work—as both an online approach based on a C++ user interface [50], as well as an

offline approach that relies on a Domain-Specific Language (DSL) for auto-tuning [49]—where

its user interface and convenient usage are presented. For example, the previous work shows that

ATF’s user interface provides (at least) the same user experience as compared to the interfaces of

the state-of-the-art frameworks CLTune and OpenTuner.

In contrast to the previous work about ATF, we introduce in this article novel, optimized mech-

anisms for generating, storing, and exploring the search space of interdependent tuning parameters

(constrained search space). The former implementation of ATF [49, 50] relies on only straight-

forward, prototype mechanisms for these three main phases of auto-tuning (not presented or

published in the previous work); thereby, the former ATF is unfeasible for important applica-

tions, as confirmed experimentally in Section 7. In particular, we introduce a novel chain-of-trees

search space structure which significantly reduces memory footprint of constrained search spaces,

thereby enabling auto-tuning important parallel applications within the memory limitations of

state-of-the-art parallel systems (Figure 4). Moreover, our novel chain-of-trees structure signifi-

cantly improves exploring large search spaces (Figure 5). We also present an improved algorithm

for generating constrained search spaces more efficiently than in ATF’s prototype implementa-

tion [49, 50] by (i) exploiting parameter constraints on each particular tuning parameter, rather

than only on a group of interdependent parameters, and (ii) parallelizing the generation of the

individual search space parts of an interdependent parameter group. Our experiments in Section 7

confirm that ATF’s novel mechanisms for search space generation, optimization, and exploration—

the key contributions of this work—significantly improve the auto-tuning efficiency of the for-

mer ATF; thereby, we combine auto-tuning efficiency (this article) with productivity (previous

work [49, 50]).

Our new mechanisms are especially important for online auto-tuning where auto-tuning is per-

formed at program runtime: our novel search space generation mechanism contributes to sig-

nificantly lower program initialization time than competitors (Figure 3), because in online auto-

tuning, the search space is usually generated at program start based on runtime values (e.g., the

input size). Moreover, our exploration mechanism finds well-performing configurations faster

(Figure 5), thereby further contributing to lower program runtime. Related approaches like Ac-

tiveHarmony when used for the special case of online auto-tuning rely on penalty values to avoid

their time-intensive processes of constrained search space generation and exploration. However,

relying on penalty values is unfeasible when aiming at auto-tuning modern parallel applications,

as we discussed in detail and showed experimentally in this article with the examples of Open-

Tuner and libtuning.

9 CONCLUSION

The ATF is a general-purpose auto-tuning approach for programs with interdependent tuning pa-

rameters. This article presents novel mechanisms for ATF toward efficiently generating, storing,

and exploring the search spaces of such parameters. Compared to the state-of-the-art general-

purpose auto-tuning frameworks, ATF’s new contributions improve each particular phase of the

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:23

auto-tuning process: (1) ATF generates the search spaces of interdependent tuning parameters

faster, (2) ATF requires less memory for storing these spaces, and (3) ATF achieves a higher ex-

ploration efficiency for such spaces. Our experiments confirm that ATF substantially enhances

general-purpose auto-tuning as compared to the state of the art, and it enables efficiently auto-

tuning applications from popular application domains, including stencil computations, linear al-

gebra routines, quantum chemistry computations, and data mining algorithms.

REFERENCES

[1] M. Ahmad and O. Khan. 2016. GPU concurrency choices in graph analytics. In 2016 IEEE International Symposium on

Workload Characterization (IISWC’16). 1–10.

[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, and

Saman Amarasinghe. 2014. OpenTuner: An extensible framework for program autotuning. In Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation. ACM, 303–316.

[3] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. 1998. An optimal algorithm

for approximate nearest neighbor searching fixed dimensions. J. ACM 45, 6 (Nov. 1998), 891–923. DOI:https://doi.org/

10.1145/293347.293348

[4] ATF Artifact Implementation. 2020. Retrieved from https://gitlab.com/mdh-project/taco2020-atf .

[5] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth, B. Norris, and R. Vuduc. 2018. Autotuning in

high-performance computing applications. Proc. IEEE 106, 11 (Nov. 2018), 2068–2083. DOI:https://doi.org/10.1109/

JPROC.2018.2841200

[6] Protonu Basu, Mary Hall, Malik Khan, Suchit Maindola, Saurav Muralidharan, Shreyas Ramalingam, Axel Rivera,

Manu Shantharam, and Anand Venkat. 2013. Towards making autotuning mainstream. Int. J. High Performance Com-

put. Appl. 27, 4 (2013), 379–393. DOI:https://doi.org/10.1177/1094342013493644

[7] Gerald Baumgartner, Alexander Auer, David E. Bernholdt, Alina Bibireata, Venkatesh Choppella, Daniel Cociorva,

Xiaoyang Gao, Robert J. Harrison, So Hirata, Sriram Krishnamoorthy, et al. 2005. Synthesis of high-performance

parallel programs for a class of ab initio quantum chemistry models. Proc. IEEE 93, 2 (2005), 276–292.

[8] David Beckingsale, Olga Pearce, Ignacio Laguna, and Todd Gamblin. 2017. Apollo: Reusable models for fast, dynamic

tuning of input-dependent code. In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS’17).

IEEE, 307–316.

[9] Joāo M. P. Cardoso, Tiago Carvalho, José G. F. Coutinho, Ricardo Nobre, Razvan Nane, Pedro C. Diniz, Zlatko Petrov,

Wayne Luk, and Koen Bertels. 2013. Controlling a complete hardware synthesis toolchain with LARA aspects. Mi-

croprocess. Microsyst. 37, 8, Part C (2013), 1073–1089. DOI:https://doi.org/10.1016/j.micpro.2013.06.001 Special Issue

on European Projects in Embedded System Design: EPESD2012.

[10] Cedric Nugteren. 2020. CLTune Issue. Retrieved from https://github.com/CNugteren/CLTune/blob/master/src/

searchers/annealing.cc#L134 (commit: 2b49667).

[11] Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHiLL: A Framework for Composing High-Level Loop Transfor-

mations. Technical Report. Citeseer. 0–27 pages.

[12] Matthias Christen, Olaf Schenk, and Helmar Burkhart. 2011. PATUS: A code generation and autotuning framework for

parallel iterative stencil computations on modern microarchitectures. In 2011 IEEE International Parallel & Distributed

Processing Symposium. IEEE, 676–687.

[13] Marco Cianfriglia, Flavio Vella, Cedric Nugteren, Anton Lokhmotov, and Grigori Fursin. 2018. A model-driven

approach for a new generation of adaptive libraries. CoRR abs/1806.07060 (2018), 14 pp. arxiv:1806.07060 http:

//arxiv.org/abs/1806.07060.

[14] T. Daniel Crawford and Henry F. Schaefer. 2000. An introduction to coupled cluster theory for computational

chemists. Revi. Comput. Chem. 14 (2000), 33–136.

[15] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael F. P. O’Boyle, and Olivier Temam. 2007.

Fast compiler optimisation evaluation using code-feature based performance prediction. In Proceedings of the 4th

International Conference on Computing Frontiers. ACM, 131–142.

[16] Matteo Frigo and Steven G. Johnson. 2005. The design and implementation of FFTW3. Proc. IEEE 93, 2 (2005),

216–231.

[17] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam, Mircea Namolaru, Elad

Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, et al. 2011. Milepost GCC: Machine learning enabled self-tuning

compile. Int. J. Parallel Program. 39, 3 (2011), 296–327.

[18] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2018. High perfor-

mance stencil code generation with lift. In Proceedings of the 2018 International Symposium on Code Generation and

Optimization (CGO’18). ACM, New York, NY, 100–112. DOI:https://doi.org/10.1145/3168824

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/293347.293348
https://doi.org/10.1145/293347.293348
https://gitlab.com/mdh-project/taco2020-atf
https://doi.org/10.1109/JPROC.2018.2841200
https://doi.org/10.1109/JPROC.2018.2841200
https://doi.org/10.1177/1094342013493644
https://doi.org/10.1016/j.micpro.2013.06.001
https://github.com/CNugteren/CLTune/blob/master/src/searchers/annealing.cc#L134
https://github.com/CNugteren/CLTune/blob/master/src/searchers/annealing.cc#L134
http://arxiv.org/abs/1806.07060
http://arxiv.org/abs/1806.07060
https://doi.org/10.1145/3168824

1:24 A. Rasch et al.

[19] Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. 2009. Annotation-based empirical performance tun-

ing using Orio. In 2009 IEEE International Symposium on Parallel & Distributed Processing. IEEE, 1–11.

[20] K. Hentschel et al. 2008. Das Krebsregister-Manual der Gesellschaft der epidemiologischen Krebsregister in Deutschland

e.V. Zuckschwerdt Verlag.

[21] Intel. 2020. Math Kernel Library. Retrieved from https://software.intel.com/en-us/mkl.

[22] Intel. 2020. Math Kernel Library for Deep Learning Networks. Retrieved from https://software.intel.com/en-us/

articles/intel-mkl-dnn-part-1-library-overview-and-installation.

[23] ISO/IEC. 2017. ISO international standard ISO/IEC 14882:2017—Programming language C++.

[24] B. Janßen, F. Schwiegelshohn, M. Koedam, F. Duhem, L. Masing, S. Werner, C. Huriaux, A. Courtay, E. Wheatley,

K. Goossens, F. Lemonnier, P. Millet, J. Becker, O. Sentieys, and M. Hübner. 2015. Designing applications for hetero-

geneous many-core architectures with the FlexTiles Platform. In 2015 International Conference on Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS’15). 254–261.

[25] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and

Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM

International Conference on Multimedia. ACM, 675–678.

[26] Z. Jia, C. Xue, G. Chen, J. Zhan, L. Zhang, Y. Lin, and P. Hofstee. 2016. Auto-tuning Spark big data workloads on

POWER8: Prediction-based dynamic SMT threading. In 2016 International Conference on Parallel Architecture and

Compilation Techniques (PACT’16). 387–400.

[27] K. Kaszyk, H. Wagstaff, T. Spink, B. Franke, M. O’Boyle, B. Bodin, and H. Uhrenholt. 2019. Full-system simulation of

mobile CPU/GPU platforms. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS’19). 68–78. DOI:https://doi.org/10.1109/ISPASS.2019.00015

[28] A. E. Kiasari, Z. Lu, and A. Jantsch. 2013. An analytical latency model for networks-on-chip. IEEE Trans. Very Large

Scale Integration (VLSI) Syst. 21, 1 (2013), 113–123.

[29] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram Krishnamoorthy, Ajay Panyala, Louis-Noël

Pouchet, Atanas Rountev, and P. Sadayappan. 2019. A code generator for high-performance tensor contractions on

GPUs. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO’19).

IEEE Press, Piscataway, NJ, 85–95. http://dl.acm.org/citation.cfm?id=3314872.3314885.

[30] Patrick Koch, Oleg Golovidov, Steven Gardner, Brett Wujek, Joshua Griffin, and Yan Xu. 2018. Autotune: A derivative-

free optimization framework for hyperparameter tuning. In Proceedings of the 24th ACM SIGKDD International Con-

ference on Knowledge Discovery & Data Mining (KDD’18). Association for Computing Machinery, New York, NY,

443–452. DOI:https://doi.org/10.1145/3219819.3219837

[31] Bastian Köpcke, Michel Steuwer, and Sergei Gorlatch. 2019. Generating efficient FFT GPU code with lift. In Pro-

ceedings of the 8th ACM SIGPLAN International Workshop on Functional High-Performance and Numerical Computing

(FHPNC’19). ACM, New York, NY, 1–13. DOI:https://doi.org/10.1145/3331553.3342613

[32] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack Davidson, and Douglas Jones. 2004. Fast searches

for effective optimization phase sequences. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation (PLDI’04). Association for Computing Machinery, New York, NY, 171–182.

DOI:https://doi.org/10.1145/996841.996863

[33] Junjie Lai and André Seznec. 2012. Bound the peak performance of SGEMM on GPU with software-controlled fast

memory. [Research Report] RR-7923, 2012. hal-00686006v1.

[34] John Lawson, Mehdi Goli, Duncan McBain, Daniel Soutar, and Louis Sugy. 2019. Cross-platform performance porta-

bility using highly parametrized SYCL kernels. CoRR abs/1904.05347 (2019), 11 pp. arxiv:1904.05347 http://arxiv.org/

abs/1904.05347

[35] Alberto Magni, Dominik Grewe, and Nick Johnson. 2013. Input-aware auto-tuning for directive-based GPU program-

ming. In Proceedings of the 6th Workshop on General Purpose Processor Using Graphics Processing Units (GPGPU-6).

Association for Computing Machinery, New York, NY, 66–75. DOI:https://doi.org/10.1145/2458523.2458530

[36] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage: Automatic optimization for image

processing pipelines. In Proceedings of the 20th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’15). Association for Computing Machinery, New York, NY, 429–443.

DOI:https://doi.org/10.1145/2694344.2694364

[37] Saurav Muralidharan, Manu Shantharam, Mary Hall, Michael Garland, and Bryan Catanzaro. 2014. Nitro: A frame-

work for adaptive code variant tuning. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

IEEE, 501–512.

[38] T. Nelson, A. Rivera, P. Balaprakash, M. Hall, P. D. Hovland, E. Jessup, and B. Norris. 2015. Generating efficient tensor

contractions for GPUs. In 2015 44th International Conference on Parallel Processing. 969–978.

[39] Gustavo Niemeyer. 2018. Python-constraint. Retrieved from https://pypi.org/project/python-constraint/.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

https://software.intel.com/en-us/mkl.
https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation.
https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation.
https://doi.org/10.1109/ISPASS.2019.00015
http://dl.acm.org/citation.cfm?id=3314872.3314885
https://doi.org/10.1145/3219819.3219837
https://doi.org/10.1145/3331553.3342613
https://doi.org/10.1145/996841.996863
http://arxiv.org/abs/1904.05347
http://arxiv.org/abs/1904.05347
https://doi.org/10.1145/2458523.2458530
https://doi.org/10.1145/2694344.2694364
https://pypi.org/project/python-constraint/

Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via ATF 1:25

[40] Cedric Nugteren. 2018. CLBlast: A tuned OpenCL BLAS library. In Proceedings of the International Workshop on

OpenCL. ACM, 1–10.

[41] Cedric Nugteren and Valeriu Codreanu. 2015. CLTune: A generic auto-tuner for OpenCL kernels. In 2015 IEEE 9th

International Symposium on Embedded Multicore/Many-core Systems-on-Chip. IEEE, 195–202.

[42] NVIDIA. 2020. cuBLAS library. Retrieved from https://developer.nvidia.com/cublas.

[43] NVIDIA. 2020. CUDA C++ Best Practices Guide. Retrieved from https://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/index.html.

[44] NVIDIA. 2020. CUDA®Deep Neural Network library. Retrieved from https://developer.nvidia.com/cudnn.

[45] OpenTuner. 2018. Interdependent Tuning Parameters (Issue 106). Retrieved from https://github.com/jansel/

opentuner/issues/106.

[46] Philip Pfaffe, Tobias Grosser, and Martin Tillmann. 2019. Efficient hierarchical online-autotuning: A case study on

polyhedral accelerator mapping. In Proceedings of the ACM International Conference on Supercomputing (ICS’19). ACM,

New York, NY, 354–366. DOI:https://doi.org/10.1145/3330345.3330377

[47] Markus Puschel, José M. F. Moura, Jeremy R. Johnson, David Padua, Manuela M. Veloso, Bryan W. Singer, Jianxin

Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, et al. 2005. SPIRAL: Code generation for DSP transforms.

Proc. IEEE 93, 2 (2005), 232–275.

[48] Ari Rasch and Sergei Gorlatch. 2018. Multi-dimensional homomorphisms and their implementation in OpenCL. Int.

J. Parallel Program. 46, 1 (01 Feb. 2018), 101–119. DOI:https://doi.org/10.1007/s10766-017-0508-z

[49] Ari Rasch and Sergei Gorlatch. 2019. ATF: A generic, directive-based auto-tuning framework. Concurrency Comput.:

Pract. Exper. 31, 5 (2019), 1–14.

[50] A. Rasch, M. Haidl, and S. Gorlatch. 2017. ATF: A generic auto-tuning framework. In 2017 IEEE 19th International

Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City;

IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). 64–71. DOI:https://doi.org/10.

1109/HPCC-SmartCity-DSS.2017.9

[51] A. Rasch, R. Schulze, and S. Gorlatch. 2019. Generating portable high-performance code via multi-dimensional homo-

morphisms. In 28th International Conference on Parallel Architectures and Compilation Techniques (PACT’19). 354–369.

[52] Ari Rasch, Richard Schulze, Waldemar Gorus, Jan Hiller, Sebastian Bartholomäus, and Sergei Gorlatch. 2019.

High-performance probabilistic record linkage via multi-dimensional homomorphisms. In Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing (SAC’19). Association for Computing Machinery, New York, NY,

526–533. DOI:https://doi.org/10.1145/3297280.3297330

[53] Simon Rovder, José Cano, and Michael O’Boyle. 2019. Optimising convolutional neural networks inference on low-

powered GPUs. In 12th International Workshop on Programmability and Architectures for Heterogeneous Multicores

(MULTIPROG-2019). 14 pp.

[54] D. Schaa and D. Kaeli. 2009. Exploring the multiple-GPU design space. In 2009 IEEE International Symposium on

Parallel Distributed Processing. 1–12.

[55] Mohammed Sourouri, Espen Birger Raknes, Nico Reissmann, Johannes Langguth, Daniel Hackenberg, Robert Schöne,

and Per Gunnar Kjeldsberg. 2017. Towards fine-grained dynamic tuning of HPC applications on modern multi-core

architectures. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis. ACM, 1–12.

[56] Akshitha Sriraman and Thomas F. Wenisch. 2018. µTune: Auto-tuned threading for OLDI microservices. In 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI’18). USENIX Association, Carlsbad, CA,

177–194. https://www.usenix.org/conference/osdi18/presentation/sriraman.

[57] Per Stenström and Jonas Skeppstedt. 1997. A performance tuning approach for shared-memory multiprocessors. In

Euro-Par’97 Parallel Processing, Christian Lengauer, Martin Griebl, and Sergei Gorlatch (Eds.). Springer, Berlin, 72–83.

[58] Larisa Stoltzfus, Bastian Hagedorn, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2019. Tiling optimiza-

tions for stencil computations using rewrite rules in lift. ACM Trans. Archit. Code Optim. 16, 4, (Dec. 2019), Article 52,

25 pages. DOI:https://doi.org/10.1145/3368858

[59] Huihui Sun, Florian Fey, Jie Zhao, and Sergei Gorlatch. 2019. WCCV: Improving the vectorization of IF-statements

with warp-coherent conditions. In Proceedings of the ACM International Conference on Supercomputing (ICS’19). ACM,

New York, NY, 319–329. DOI:https://doi.org/10.1145/3330345.3331059

[60] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim, M. T. Kandemir, and C. R. Das. 2017. Controlled

kernel launch for dynamic parallelism in GPUs. In 2017 IEEE International Symposium on High Performance Computer

Architecture (HPCA’17). 649–660. DOI:https://doi.org/10.1109/HPCA.2017.14

[61] Thiago SFX Teixeira, William Gropp, and David Padua. 2019. Managing code transformations for better performance

portability. Int. J. High Performance Comput. Appl. 33, 6 (2019), 1290–1306.

[62] Thiago S. F. X. Teixeira, Corinne Ancourt, David Padua, and William Gropp. 2019. Locus: A system and a language

for program optimization. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO’19). IEEE Press, Piscataway, NJ, 217–228.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

https://developer.nvidia.com/cublas.
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://developer.nvidia.com/cudnn.
https://github.com/jansel/opentuner/issues/106
https://github.com/jansel/opentuner/issues/106
https://doi.org/10.1145/3330345.3330377
https://doi.org/10.1007/s10766-017-0508-z
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.9
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.9
https://doi.org/10.1145/3297280.3297330
https://www.usenix.org/conference/osdi18/presentation/sriraman
https://doi.org/10.1145/3368858
https://doi.org/10.1145/3330345.3331059
https://doi.org/10.1109/HPCA.2017.14

1:26 A. Rasch et al.

[63] Philippe Tillet and David Cox. 2017. Input-aware auto-tuning of compute-bound HPC kernels. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 1–12.

[64] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An intermediate language and compiler for tiled neural

network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and

Programming Languages (MAPL’19). ACM, New York, NY, 10–19. DOI:https://doi.org/10.1145/3315508.3329973

[65] Ananta Tiwari, Vahid Tabatabaee, and Jeffrey K. Hollingsworth. 2009. Tuning parallel applications in parallel. Parallel

Comput. 35, 8 (2009), 475–492. DOI:https://doi.org/10.1016/j.parco.2009.07.001

[66] Ben van Werkhoven. 2019. Kernel tuner: A search-optimizing GPU code auto-tuner. Future Gen. Comput. Syst. 90

(2019), 347–358. DOI:https://doi.org/10.1016/j.future.2018.08.004

[67] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary Devito, William S. Moses, Sven

Verdoolaege, Andrew Adams, and Albert Cohen. 2019. The next 700 accelerated layers: From mathematical expres-

sions of network computation graphs to accelerated GPU kernels, automatically. ACM Trans. Archit. Code Optim. 16,

4 (Oct. 2019), Article 38, 26 pages. DOI:https://doi.org/10.1145/3355606

[68] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog, P. B. Gibbons, and O. Mutlu. 2016.

Zorua: A holistic approach to resource virtualization in GPUs. In 2016 49th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO’16). 1–14.

[69] R. Clinton Whaley and Jack J. Dongarra. 1998. Automatically tuned linear algebra software. In SC’98: Proceedings of

the 1998 ACM/IEEE Conference on Supercomputing. IEEE, 38.

[70] Stephen Wright and Jorge Nocedal. 1999. Numerical optimization. Springer Sci. 35, 67–68 (1999), 7.

[71] Vasileios Zois, Divya Gupta, Vassilis J. Tsotras, Walid A. Najjar, and Jean-Francois Roy. 2018. Massively parallel

skyline computation for processing-in-memory architectures. In Proceedings of the 27th International Conference on

Parallel Architectures and Compilation Techniques (PACT’18). Association for Computing Machinery, New York, NY,

Article 1, 12 pages. DOI:https://doi.org/10.1145/3243176.3243187

Received May 2020; revised September 2020; accepted September 2020

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1016/j.parco.2009.07.001
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1145/3355606
https://doi.org/10.1145/3243176.3243187

