
ATF: A Generic Auto-Tuning Framework

Ari Rasch
University of Muenster

Einsteinstr. 62

Muenster, Germany

Email: a.rasch@wwu.de

Michael Haidl
University of Muenster

Einsteinstr. 62

Muenster, Germany

Email: m.haidl@wwu.de

Sergei Gorlatch
University of Muenster

Einsteinstr. 62

Muenster, Germany

Email: gorlatch@wwu.de

Abstract—We describe the Auto-Tuning Framework (ATF) —
a novel generic approach for automatic program optimization
by choosing the most suitable values of program parameters,
such as number of parallel threads, tile sizes, etc. Our frame-
work combines four advantages over the state-of-the-art auto-
tuning: i) it is generic regarding the programming language,
application domain, tuning objective (e.g., high performance
and/or low energy consumption), and search technique; ii) it
can auto-tune a broader class of applications by allowing tuning
parameters to be interdependent, e.g., when one parameter is
divisible by another parameter; iii) it allows tuning parameters
with substantially larger ranges by implementing an optimized
search space generation process; and iv) its interface is arguably
simpler than the interfaces of current auto-tuning frameworks.
We demonstrate ATF’s efficacy by comparing it to the state-of-
the-art auto-tuning approaches OpenTuner and CLTune, showing
better tuning results with less programmer’s effort.

I. MOTIVATION AND RELATED WORK

In order to achieve high performance and/or low energy

consumption, programs have to be optimized for differ-

ent hardware architectures. For multi-core CPUs and many-

core GPUs which are often programmed in OpenCL [11]

and/or CUDA [14], the programmer has to choose values

for performance-critical parameters (a.k.a. tuning parameters),

e.g., the number of threads (a.k.a. work-items in OpenCL) and

the number of thread groups (work-groups in OpenCL and

blocks in CUDA).

Auto-tuning is an approach to automatically find optimal

values of tuning parameters. To auto-tune a program, the pro-

grammer has to identify program’s tuning parameters and to

perform the following three steps: 1) generate an application-

specific search space of parameter configurations, i.e., sets

of tuning parameter values, 2) implement a cost function for

estimating program’s cost (e.g., its runtime) for a configuration

in terms of the target objective, and 3) explore the generated

search space using a search technique to find a configuration

providing minimal cost. Auto-tuning has been successfully

applied in different areas, including ATLAS [20] for linear

algebra routines, PATUS [6] for stencil computations, MILE-

POST [7] for compiler optimizations, CHiLL [5] and Orio [8]

for loop operations, Active Harmony [19] for runtime systems,

and Apollo [2] for execution policies. These approaches im-

plement auto-tuning specifically for their target domains and

cannot be used for other domains.

OpenTuner [1] is a recent approach that is generic regarding

the application domain: given an arbitrary, user-provided cost

function and a specification of the tuning parameters (i.e.,

their names and the ranges of possible values), OpenTuner

automatically generates a search space and explores it in

terms of a user-defined objective by using pre-implemented

search techniques. However, OpenTuner does not provide

mechanisms for expressing dependencies between parameters.

For example, the important routine GEMM (GEneral Matrix
Multiplication) [13] when implemented in OpenCL has various

tuning parameters (tile size, work-group size, etc.) which have

dependencies between them, e.g., some parameter must be di-

visible by another parameter [15]. Due to these dependencies,

OpenTuner is not capable of tuning GEMM. The OpenTuner

community has offered workarounds, e.g., re-designing the

user program so that its tuning parameters become indepen-

dent [9], or setting a penalty value for configurations where the

dependencies fail [3]. However, the former workaround usually

requires a significant effort from the user, and the latter may

cause a poor tuning result as we demonstrate for GEMM in

Section VI. Moreover, OpenTuner is optimized for auto-tuning

programs with large parameter ranges and, thus, it does not

provide search techniques for small ranges, e.g., exhaustive

search which finds the provably best result.
CLTune [16] is an auto-tuning framework for OpenCL

that allows tuning parameters to be interdependent — the

search space can be filtered by user-defined boolean functions.

However, CLTune is not generic regarding the programming

language and objective: it is restricted to auto-tuning OpenCL

in terms of runtime performance only. Moreover, CLTune

is applicable only for parameters with small ranges due to

the time-intensive process of search space generation when

tuning parameters are interdependent. Thus, parameter ranges

have to be artificially limited by the user, requiring expert

knowledge from the user and often leading to non-optimal

solutions [1]. We demonstrate that even when such limitations

are implemented by an expert, CLTune is still not suitable for

auto-tuning GEMM for practice-relevant input sizes as used

in the context of deep learning [10].
In this paper, we propose the Auto-Tuning Framework (ATF)

which combines the following advantages over the state-of-

the-art auto-tuning approaches:

i) ATF allows auto-tuning programs in arbitrary program-

ming languages and of arbitrary application domains,

using a user-defined search technique and objective; its

pre-implemented search techniques suite programs with

2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International

Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems

978-1-5386-2588-0/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCC-SmartCity-DSS.2017.9

64

both small and large tuning parameter ranges;

ii) ATF allows dependencies between tuning parameters,

thus enabling to auto-tune a broader class of applications;

iii) ATF allows substantially larger parameter ranges by op-

timizing the process of search space generation;

iv) ATF is arguably simpler to use due to pre-implemented

cost functions for OpenCL, CUDA, and other program-

ming languages different from OpenCL and CUDA.

II. ILLUSTRATION OF ATF

We illustrate the usage of ATF by a simple example: auto-

tuning the saxpy kernel of the CLBlast library [15]. The

kernel is written in OpenCL; it takes as its input the input

size N , a floating point value a and two N -sized vectors x
and y of floating point values, and it computes:

y[i] = a ∗ x[i] + y[i]

for all i ∈ [1, N].
Listing 1 shows the saxpy kernel. For simplicity, we re-

moved switching between single and double precision, as well

as using OpenCL vector data types. The kernel is executed

on a device (e.g., a GPU) in parallel by several work-items
(WIs) — the OpenCL term for thread. Each WI computes a

chunk of WPT-many elements of the result vector; WPT stands

for work-per-thread — the CLBlast terminology for the chunk

size — and is a tuning parameter; the programmer has to

replace it textually (e.g., using the OpenCL preprocessor) by

a concrete value that is optimized for the target hardware,

or he uses an auto-tuning tool to automatically determine and

replace WPT by an optimized value. The WIs iterate over their

corresponding chunk of the input (line 7) and compute in each

iteration the index of the input elements of x and y (line 8)

to be used in the computation of saxpy (line 10). OpenCL

requires work-items to be grouped in so-called work-groups.

The number of work-items per work-group is called local size
(LS) which is a further tuning parameter, i.e, it has also to

be chosen specifically for the target device. The local size is

set in the OpenCL host code when invoking the kernel on a

device.

__kernel void saxpy(const int N, 1
 const float a, 2
 const __global float* x, 3
 __global float* y 4
) 5
{ 6
 for(int w = 0; w < WPT; ++w) { 7
 const int index = w * get_global_size(0) 8
 + get_global_id(0);
 9
 y[index] += a * x[index]; 10
 } 11
} 12

Listing 1: Simplified saxpy kernel from CLBlast.

For the correctness of the saxpy kernel, WPT must divide

the input size N, such that each WI processes an equal-sized

chunk of the input. Moreover, the OpenCL specification [11]

requires the local size to divide the global size — the total

number of work-items — which in case of the saxpy kernel

is N/WPT. Analogously to the local size, the global size is

passed from the host code when invoking the kernel.

Listing 2 demonstrates how ATF is used for optimizing the

saxpy kernel in Listing 1. For high performance, we auto-

tune the two parameters WPT and LS specifically for a fixed,

user-defined input size N (line 4). The ATF program (Listing 2)

is written in C++ and performs the three steps for auto-tuning,

as explained in the following.

int main() 1
{ 2
 std::string saxpy_kernel = /* path to kernel of Listing 1 */; 3
 int N = /* fixed user-defined input size */; 4
 5
 auto WPT = atf::tp("WPT", 6
 atf::interval<size_t>(1,N), 7
 atf::divides(N) 8
); 9
 auto LS = atf::tp("LS", 10
 atf::interval<size_t>(1,N), 11
 atf::divides(N/WPT) 12
); 13
 14
 auto cf_saxpy = atf::cf::ocl(15
 { "NVIDIA", "Tesla K20c" }, 16
 saxpy_kernel, 17
 inputs(atf::scalar<int>(N), // N 18
 atf::scalar<float>(), // a 19
 atf::buffer<float>(N), // x 20
 atf::buffer<float>(N), // y 21
) 22
 atf::glb_size(N/WPT), atf::lcl_size(LS) 23
); 24
 25
 auto best_config = atf::annealing(atf::duration<minutes>(10)) 26
 (WPT, LS) 27
 (cf_saxpy); 28
} 29

Listing 2: ATF program for auto-tuning the saxpy kernel.

Step 1: Generate the Search Space

ATF automatically generates the search space. For this,

the user describes the application-specific search space using

tuning parameters; in this example: 1) the work-per-thread

WPT (line 6-9) which is a size_t parameter in the in-

terval [1, N] (line 7) that has to divide the input size N
(line 8), and 2) the local size LS (line 10-13) — a size_t
parameter in [1, N] (line 11) that divides the global size

N/WPT (line 12). The generated search space comprises all

valid parameter configurations, i.e., for which the parameters’

constraints (line 8, 12) are satisfied.

The general form of an ATF tuning parameter is as follows:

atf::tp(/* name */,
 /* range */,
 /* constraint */
);

It has a name, a range, and a constraint, which we explain in

the following. A name is a tuning parameter’s unique identifier

used to get a parameter’s value conveniently out of a config-

uration. For example, best_config["LS"] gets the value

of LS out of the best found configuration best_config in

line 26.

A tuning parameter’s range specifies the valid values of

the parameter. It can be defined as either an interval or

65

a set. An interval atf::interval<T>(begin, end,
step_size, generator) represents the values of an ar-

bitrary fundamental type T (e.g., bool, integer, or float)

from begin to end using the optional step_size that has

a default value of 1. The generator is also optional; it

allows defining domain-specific parameter ranges and can be

any arbitrary C++ callable (i.e., a lambda, a function pointer, or

a functor) with the input type T and an arbitrary fundamental

output type T’. When a generator function is used, the range

type changes automatically to T’, and the interval comprises

the elements generator(i) for each i from begin to

end. For example, atf::interval<size_t>(1, 10,
[](size_t i){ return std::pow(2,i); }) rep-

resents the first ten powers of 2. Here, the generator function

is a lambda that takes a size_t parameter i and returns

the i-th power of 2. For small ranges, it is more convenient

to state a range’s elements explicitly. For this, ATF provides

atf::set(val_1,...,val_n) — a set that comprises

the elements val_1,...,val_n. For convenience, a set

can be expressed also as an std::initializer_list
of the form {val_1, ... val_n}. To enable auto-tuning

parameters comprising user-defined values, sets may also

comprise values of an enum type.

Constraints are a major feature of ATF; they enable fil-

tering a tuning parameter’s range. A constraint can be any

arbitrary C++ callable that takes a value of the parame-

ter’s range and returns a value of the type bool: values

for which the constraint returns false are filtered out of

the range. Constraints can be used to conveniently define

dependencies between tuning parameters: e.g., in line 12 of

Listing 2, we use the tuning parameter WPT in the con-

straint of the tuning parameter LS in order to ensure that

LS divides N/WPT. Here, atf::divides(N/WPT) re-

turns the lambda function [&](size_t LS){ return
(N/WPT) % LS == 0; }. We refer to atf::divides
as a constraint alias which is offered by ATF for pro-

grammer’s convenience. Currently, ATF provides six con-

straint aliases: divides, is_multiple_of, less_than,

greater_than, equal, and unequal. Further aliases

can be easily added to ATF by the user. Constraints can be

combined using the logical operators && and ||.

Step 2: Implement a Cost Function

The user implements a cost function that takes a configura-

tion of tuning parameter values and returns a value of a type

for which operator < is defined, e.g., size_t. ATF interprets

cost function’s return value (e.g., program’s runtime) as the

configuration’s cost that has to be minimized.

We enable multi-objective tuning, e.g., minimizing first run-

time and then energy consumption, by allowing cost functions

to have an arbitrary, user-defined return type. For example,

to auto-tune for both, runtime performance and low energy

consumption, the user chooses pairs as return type. Pairs

comprise runtime (e.g, in ms) and energy consumption (e.g.,

in microjoules) and < is defined as lexicographical order, i.e.:

configuration c has a lower cost than configuration c’ if either

c has a lower runtime than c’, or when c and c’ have

the same runtime and c causes a lower energy consumption

than c’.

For user’s convenience, ATF provides a pre-implemented

cost function atf::cf::ocl (Listing 2, line 15-24) for

auto-tuning OpenCL kernels in terms of runtime performance.

In this example, the cost function (line 15) is initialized

with the Tesla K20c device of system’s NVIDIA platform

(line 16) — this choice is arbitrary and could also be any

other of system’s OpenCL-compatible devices. As the kernel’s

input, we use the input size N (line 18), a floating point

number for a that is randomly generated by ATF (line 19),

and two N -sized buffers for x and y that are also filled

with random floating point numbers (line 20-21) — random

data is the default input when auto-tuning OpenCL kernels.

The kernel’s global and local size are set in line 23 using

ATF’s functions atf::glb_size and atf::lcl_size,

correspondingly. The initialized cost function cf_saxpy (line

15) then takes configurations comprising concrete values for

WPT and LS, and it returns the saxpy kernel’s runtime for

that concrete WPT and LS. For this, cf_saxpy replaces in

kernel’s source code the tuning parameters’ names by their

corresponding values in the input configuration using the

OpenCL preprocessor, and it uses pre-implemented OpenCL

host code that invokes the kernel with the passed global/local

size, and measures and returns the kernel’s runtime using the

OpenCL profiling API. To avoid the usually time-intensive

host-to-device/device-to-host data transfers, we upload data

only once during cost function’s initialization, and we refrain

from downloading the data — auto-tuning is performed on

random data, as the computed result is not needed. Optionally,

ATF’s OpenCL cost function can support error checking for

the computed results.

ATF provides also a pre-implemented cost function for auto-

tuning CUDA kernels. It is based on the NVIDIA NVRTC

library [17] and used analogously to the ATF’s OpenCL cost

function, with the only difference that platform’s name is

omitted, because CUDA targets NVIDIA devices only.

Moreover, ATF provides a generic cost function to simplify

auto-tuning programs written in an arbitrary programming lan-

guage, using an arbitrary objective. This function is initialized

with: 1) the path to program’s source file, 2) paths to two user-

provided scripts for compiling and running the program, and

optionally 3) the path to a log file to which the user program

writes its cost that ATF should minimize; if no log file is stated,

ATF automatically measures and uses program’s runtime as

cost. For multi-objective tuning, the auto-tuned program writes

comma-separated costs (e.g., as pairs) to the log file; ATF

then minimizes these costs using the lexicographical order, or,

alternatively, a user-defined order.

Step 3: Explore the Search Space

The user explores the search space (line 26-28) by choos-

ing a search technique (in this example: simulated anneal-

ing [12]) and passing to it: i) an abort condition, here

atf::duration which causes to stop exploration after

66

10 minutes (line 26), ii) the tuning parameters (line 27),

and iii) the cost function (line 28).

Currently, ATF allows the user to choose among three pre-

implemented search techniques: 1) exhaustive search which

finds the provably best configuration, but probably at the

cost of a long search time, 2) simulated annealing which has

proven to be effective for auto-tuning OpenCL and CUDA

applications if search spaces are too large to be explored

exhaustively [16], and 3) the OpenTuner search which au-

tomatically combines various well-proven search techniques,

e.g., many variants of Nelder-Mead search (a.k.a. simplex

method) and Torczon hillclimbers, to yield a good tuning result

on average for applications with large search spaces [1]. For

domain-specific requirements, the user can extend ATF by new

search techniques as demonstrated in Section IV.

To stop the exploration process, ATF offers the following

six abort conditions:

1) duration<D>(t): stops exploration after

a user-defined time interval t; here, D is an

std::chrono::duration and states the time

unit: seconds, minutes, etc.;

2) evaluations(n): stops after n tested configurations;

3) fraction(f): stops after f*S tested configurations,

where f is a floating point value in [0, 1] and S the

search space size;

4) cost(c): stops when a configuration with a cost ≤ c
has been found;

5) speedup<D>(s,t): stops when within the last time

interval t the cost could not be lowered by a factor ≥s;

6) speedup(s,n): stops when within the last n tested

configurations the cost could not be lowered by a factor

≥s.

If no abort condition is passed, ATF uses evaluations(S),

where S is the search space size. Abort conditions can be

combined by using the logical operators && and ||. New

abort conditions can be easily added to ATF.

III. COMPARISON: ATF VS. CLTUNE

We now demonstrate that even though ATF is a generic

approach, it is expressive and easy to use. For this, we

compare the generic ATF to the framework CLTune [16] that

is specifically designed for auto-tuning OpenCL.

In the following, we compare the ATF program for saxpy
in Listing 2 with the CLTune program for saxpy in List-

ing 3 taken from [4]. We demonstrate that ATF’s constraints

conveniently express parameter dependencies and that ATF

allows tuning parameters of arbitrary types, making ATF more

flexible and less memory-intensive. Moreover, we demonstrate

that OpenCL’s global and local sizes can be expressed in ATF

as common arithmetic expressions, thus further contributing

to ATF’s usability and expressiveness.

In Listing 3, the user chooses a target device, sets the kernel,

and prepares the kernel’s input data (line 6-24). Afterwards,

he defines the saxpy-specific tuning parameters (line 26-39)

and then starts the tuning process (line 41-43). We now discuss

each of the three steps required for auto-tuning.

int main() 1
{ 2
 const std::string saxpy = /* path to kernel of Listing 1 */; 3
 const size_t N = /* fixed user-defined input size */; 4
 5
 cltune::Tuner tuner(1,0); 6
 auto id = tuner.AddKernel(saxpy, "saxpy", {N}, {1}); 7
 8
 float a; 9
 auto x = std::vector<float>(N); 10
 auto y = std::vector<float>(N); 11
 12
 const auto random_seed = 13
 std::chrono::system_clock::now().time_since_epoch().count();
 std::default_random_engine 14
 generator(static_cast<unsigned int>(random_seed));
 std::uniform_real_distribution<float> distribution(-2.0f,2.0f); 15
 16
 a = distribution(generator); 17
 for (auto &item: x) { item = distribution(generator); } 18
 for (auto &item: y) { item = distribution(generator); } 19
 20
 tuner.AddArgumentScalar(N); 21
 tuner.AddArgumentScalar(a); 22
 tuner.AddArgumentInput(x); 23
 tuner.AddArgumentOutput(y); 24
 25
 auto range = std::vector<size_t>(N); 26
 for(size_t i = 0; i < N ; ++i) 27
 range[i] = i; 28
 tuner.AddParameter(id, "LS" , range); 29
 tuner.AddParameter(id, "WPT", range); 30
 31
 auto DividesN = [](std::vector<size_t> v) 32
 {
 return N % v[0] == 0;
 };
 auto DividesNDivWPT = [](std::vector<size_t> v) 33
 {
 return (N / v[0]) % v[1] == 0;
 };
 34
 tuner.AddConstraint(id, DividesN , {"WPT"}); 35
 tuner.AddConstraint(id, DividesNDivWPT, {"WPT", "LS"}); 36
 37
 tuner.DivGlobalSize(id, {"WPT" }); 38
 tuner.MulLocalSize(id, {"LS"}); 39
 40
 tuner.UseAnnealing(1.0f/2048.0f , 4.0); 41
 tuner.Tune(); 42
 const auto parameters = tuner.GetBestResult(); 43
} 44

Listing 3: CLTune program for auto-tuning the saxpy kernel.

Step 1: Generate the Search Space

CLTune allows the user to express parameter interdepen-

dencies by boolean functions — in this example DividesN
and DividesNDivWPT — which are used to filter the

search space (Listing 3, line 32-36). ATF follows a different

approach: the user uses boolean functions to constrain the

parameter ranges (Listing 2, line 8, 12), rather than the search

space which can become very large. This design decision

enables ATF to enormously accelerate the process of search

space generation and, consequently, to auto-tune parameters

with significantly larger ranges. Moreover, CLTune requires

abstractions by vectors for using tuning parameters in boolean

functions (Listing 3, line 32, 33) while ATF does not require

such abstractions, thus making its use more convenient.

In CLTune, tuning parameters have to be of type size_t.

In contrast, ATF allows tuning parameters to be of an arbitrary

fundamental type (e.g., bool, float, etc.) and also of type

enum for user-defined types, making ATF suitable for a broad

range of applications with differently-typed tuning parameters.

Furthermore, ATF reduces memory utilization since size_t
has a higher memory consumption than integer or bool.

67

Step 2: Implement a Cost Function

ATF tunes program’s parameters with respect to an arbitrary

cost function, thus allowing to auto-tune programs in arbitrary

programming languages for an arbitrary objective (e.g., high

performance and/or low energy consumption). In constrast,

CLTune is only suitable for auto-tuning OpenCL programs

and only in terms of runtime performance. ATF provides a

pre-implemented cost function that allows conveniently auto-

tuning OpenCL programs (Listing 2, line 15-24). We argue

that using ATF for OpenCL is more convenient than CLTune,

for the following reasons.

In CLTune, the global and local size have to be passed to

the function AddKernel (Listing 3, line 7). Since these two

values are usually dependent on tuning parameters, CLTune

provides special functions DivGlobalSize (line 38) and

MulLocalSize (line 39) to override the initial value by

dividing/multiplying the global/local size with a tuning pa-

rameter’s value. In contrast, ATF handles this more generally

and allows to conveniently define the global/local size as an

arithmetic expression containing tuning parameters (Listing 2,

line 23); the ATF user need not set the global and local size

to initial values and modify them later using special functions

to make them dependent on tuning parameters. The generality

of ATF makes it also more expressive: for example, in the

CLBlast library, GEMM kernel’s global size is computed

as an arithmetic expression comprising tuning parameters

and constants — this cannot be expressed in CLTune, i.e.,

CLBlast has to use a simplified global size for auto-tuning its

GEMM kernel, thus causing non-optimal tuning results as we

demonstrate in Section VI.

Our OpenCL cost function can generate random input

data of arbitrary fundamental data types (e.g., float) as

usually required for auto-tuning OpenCL kernels. For exam-

ple, atf::scalar<T>() (Listing 2, line 19) generates a

random value of type T and passes it to the kernel, and

atf::buffer<T>(N) (line 20-21) generates and passes to

the kernel a buffer comprising N random elements of T. In

comparison, the CLTune user is responsible for generating

input data (Listing 3, line 13-19). If the ATF user aims at

using concrete input data, he can use atf::scalar(a)
to pass the scalar a of an arbitrary fundamental type to the

kernel, and atf::buffer(vec) where vec is an arbitrary

std::vector<T> for a fundamental data type T.

ATF allows the user to choose a device directly by its

platform and device name (Listing 2, line 16), without the

inconvenient interactions with the OpenCL API requiring

knowledge about special OpenCL flags and performing string

operations. In contrast, the CLTune user chooses the target

device by its platform’s and device’s id (Listing 3, line 6)

which are usually determined via the OpenCL API using the

platform and device name and are dependent on system’s

configuration, i.e.: CLTune programs may require reconfigura-

tion/recompiling when system’s configuration changes, e.g., a

new OpenCL implementation is installed, a new device added,

etc.

Step 3: Explore the Search Space

In contrast to CLTune, ATF provides as an optional search

technique the OpenTuner’s search engine with its broad choice

of search methods, enabling effective exploration especially

for large search spaces [1]. Moreover, ATF allows an arbitrary

objective and also multi-objective tuning (see Section II),

while CLTune is restricted to exploring its search space only

in terms of runtime performance as objective.

CLTune uses as abort condition testing a user-defined num-

ber of configurations while ATF offers further abort conditions,

e.g., to stop the tuning depending on the tuning result (cost
and speedup), and also allows to combine abort conditions

by logical operators to meet complex user requirements.

IV. SEARCH TECHNIQUES IN ATF

ATF provides three search techniques: 1) exhaustive

search, 2) simulated annealing, and 3) OpenTuner search. All

of them implement the same generic interface:

class search_technique
{
 void initialize(search_space sp);
 void finalize();
 configuration get_next_config();
 void report_cost(size_t cost);
}

Here, function initialize takes the search space as ar-

gument; it is called by ATF once before starting the ex-

ploration process to initialize the search technique for the

passed search space. Function finalize is the counterpart

of initialize: it is called after the exploration process,

e.g., to free allocated memory, etc. During exploration, ATF

performs repeatedly the following two steps until the chosen

abort condition is satisfied: 1) it takes a configuration using the

function get_next_config, determines the configuration’s

cost by using the user-provided or pre-implemented cost-

function, and 2) it reports the returned cost back to the search

technique using report_cost.

We now discuss the implementation of these four func-

tions for each of ATF’s three search techniques. Further

search techniques can be added to ATF by implementing the

search_technique interface.

A. Exhaustive search

The exhaustive search iterates straightforwardly over

the search space. The implementation of finalize and

report_cost is void; function initialize stores a ref-

erence to the passed search space, and get_next_config
returns for each call a new configuration within the search

space.

B. Simulated Annealing search

For simulated annealing which has proven to be effec-

tive for exploring OpenCL and CUDA search spaces [16],

the implementation of initialize and finalize is

straightforward: memory for intermediate results is allo-

cated/deallocated, etc. Function get_next_config returns

in each call a random neighbor c′ of the current configuration

68

c, and the corresponding runtime t′ of c′ is reported back

using function report_cost. The configuration c′ becomes

the new current configuration with probability

P (t, t′, T) = e−(t′−t)∗T−1

if t′ ≥ t and 1 otherwise. Here, t′ and t represent the runtimes

of configurations c′ and c, and T is the so-called annealing

temperature. The value T = 4 was reported as suitable for

OpenCL and CUDA [16].

C. OpenTuner search

The OpenTuner framework [1] implements various search

techniques, e.g., Nelder-Mead and Torczon hillclimbers, se-

lected automatically for a concrete search space. As discussed

above, the OpenTuner is not suitable for auto-tuning pa-

rameters with dependencies between them. We employ the

OpenTuner’s search engine as an ATF’s search technique,

because ATF’s search space contains per construction only

configurations where parameter dependencies are satisfied

(see Section II). For this, we define the OpenTuner tuning

parameter TP with a range of integers from 1 to S, where S
is the search space size and TP is the index for configurations

within the ATF search space.

The implementation of the search_technique class’

functions for OpenTuner is as follows. We embed OpenTuner’s

Python interface in C++ by using the Python-provided

C++ embedding API [18]. In the initialize function,

we initialize the Python interpreter and embed straight-

forwardly the OpenTuner interface, which we then use

to define the OpenTuner tuning parameter TP. Function

get_next_config in each call takes from OpenTuner a

new prediction for TP and returns the configuration with index

TP within the ATF search space. The returned configuration is

evaluated by ATF using the user-provided cost function, and

the corresponding cost is passed to the OpenTuner by calling

the report_cost function which then calls the correspond-

ing function of the OpenTuner interface. The finalize
function destructs the Python embedding API.

V. ADVANCED ATF USAGE

Applications with many tuning parameters (e.g., the matrix

multiplication GEMM has 10 tuning parameters) usually com-

prise different groups of interdependent parameters, allowing

ATF to generate search space faster, e.g., in parallel using C++

multithreading.

Figure 1 shows a simple (artificial) example of four tuning

parameters tp_1, . . . ,tp_4. For simplicity, each parameter

has the same small range comprising values 1 and 2. The con-

straint of tp_2, i.e., atf::divides(tp_1), uses tp_1,

and, analogously, the constraint of tp_4 uses tp_3; the

parameters tp_1 and tp_3 have no constraints. Therefore,

tp_1 and tp_2 make together a group of interdependent

parameters, and tp_3 and tp_4 comprise a further group.

For each group, the corresponding part of the search space

can be generated in parallel: parameters tp_1 and tp_2 do

auto tp_1 = atf::tp("tp_1", {1,2});
auto tp_2 = atf::tp("tp_2", {1,2}, atf::divides(tp_1));

auto tp_3 = atf::tp("tp_3", {1,2});
auto tp_4 = atf::tp("tp_4", {1,2}, atf::divides(tp_3));

tp 1
tp 1

tp 3
tp 3

Fig. 1: Example of tuning parameters that allow parallel search

space generation.

not influence possible values for tp_3 and tp_4, and vice

versa.

Currently, ATF cannot automatically determine dependen-

cies between parameters: the user has to group interdependent

parameters explicitly using the grouping function G(...):

atf::/* search technique */(/* abort condition */)
 (G(tp_1, tp_2) , G(tp_3, tp_4))
 (/* cost function */);

ATF then generates the search space in parallel using one

thread per dependent parameter group. Our parallel implemen-

tation is based on the Standard C++ Threading Library.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate that ATF provides better

tuning results for GEMM (GEneral Matrix Multiplication)

than the state-of-the-art auto-tuning approaches CLTune and

OpenTuner.

As concrete GEMM implementation, we take the

XgemmDirect kernel; it is part of the auto-tunable

OpenCL BLAS library CLBlast which uses CLTune for

auto-tuning. The kernel is optimized for small matrix sizes

of up to 210 × 210 and is used to accelerate important

applications, e.g., the state-of-the-art deep learning framework

Caffe [10]. It has 10 tuning parameters, with the following

ranges for N ×N input matrices [15]:

• 6 integer parameters WGD, MDIMCD, NDIMCD, MDIMAD,

NDIMBD, and KWID, each with a range {1, . . . , N};

• 2 integer parameters VWMD and VWND, each with a

range {1, 2, 4, 8};

• 2 boolean parameters PADA and PADB, each with a

range {true,false}.

Here, WGD represents the tile size and KWID the loop unrolling

factor. The parameters have various interdependencies (17 in

total), e.g., KWID has to divide WGD, and WGD has to divide

result matrix’s number of rows and number of columns,

respectively.

For evaluation, we use a dual-socket system equipped with

two Intel Xeon E5-2640 v2 8-core CPUs, tacted at 2GHz with

128 GB main memory and hyper-threading enabled, as well as

a NVIDIA Tesla K20m GPU. We perform experiments using

both the CPU and GPU as OpenCL devices. The dual-socket

CPU is represented in OpenCL as a single device with 32

compute units, corresponding to the overall 2 × 16 logical

cores in the system. We compare with CLTune version 2.6.0

and OpenTuner version 0.7.0. The XgemmDirect kernel is

extracted from CLBlast version 0.11.0.

69

Fig. 2: Speedup (higher is better) of the XgemmDirect kernel auto-tuned by ATF over auto-tuning by CLTune and OpenTuner

on Intel CPU (left) and NVIDIA GPU (right), using four different input sizes IS1-IS4.

Figure 2 shows the measured speedup of the

XgemmDirect kernel auto-tuned by ATF as compared

to the kernel auto-tuned with CLTune and OpenTuner,

correspondingly. We study four pairs of matrix input

sizes (IS) that are heavily used in Caffe [10], e.g., in Caffe’s

sample siamese, and thus are of great importance in the

context of deep learning:

• IS 1: 20× 1 and 1× 576
• IS 2: 20× 25 and 25× 576
• IS 3: 50× 1 and 1× 64
• IS 4: 10× 64 and 64× 500

We employ the CLTune program that CLBlast uses for

auto-tuning XgemmDirect [15], and we implement the

OpenTuner program for this kernel according to [3], where

we use the unconstrained search space; we report a penalty

value in case of a configuration for which XgemmDirect’s

constraints are not satisfied.

A. ATF vs. CLTune

In Figure 2, we observe that, in comparison to CLTune, ATF

improves XgemmDirect’s runtime by factors from 1.66×
to 17.60× on the CPU (left part of the figure, logarithmic

scale), and from 1.33× to 3.62× on the GPU (right part

of the figure). The reason is that CLBlast artificially limits

CLTune’s tuning parameter ranges, apparently because of

CLTune’s time-intensive process of search space generation.

For example, the tile size WGD is limited to {8, 16, 32} and

is constrained to divide result matrix’s number of rows and

number of columns [15]. Due to this constraint, the range

limitation of WGD causes search space to be empty for the

matrix sizes used in deep learning: either result matrix’s

number of rows or number of columns is not a multiple

of 8. Therefore, the XgemmDirect kernel relies on CLTune’s

device-optimized values for its tuning parameters (i.e., opti-

mized for the average matrix input size of 256 × 256), thus

causing a poor performance. The higher speedup of ATF on

the CPU as compared to GPU is because XgemmDirect’s

limited tuning parameter ranges comprise values that are rather

optimal for the GPUs’ architecture than for CPUs.

We tried to improve the CLTune program by removing

the artificial limitations on the parameters’ ranges. However,

even for the multiplication of small 32× 32 matrices, the

search space generation takes too much time — we aborted

after 3 hours — while ATF requires less than 1 second for

generating its search space. The reason is that ATF filters out

invalid configurations by iterating over the constrained ranges

of tuning parameters as described in Section II. In contrast,

CLTune iterates over the entire, unconstrained search space

and then filters out the invalid configurations. For the routine’s

maximal supported matrix size 210 × 210, the unconstrained

space of all possible configurations has a prohibitively huge

size of more than 1019 configurations while the constrained

search space in ATF comprises nearly 107 configurations.
Moreover, ATF allows refraining from some of the con-

straints used in CLTune’s program for XgemmDirect since

ATF allows expressing the OpenCL global and local size

more generally than CLTune (see Section III). For example,

in CLTune, the constraints on the tile size ensure that the

local size divides evenly the global size. However, in CLBlast,

the global size is automatically adapted to a multiple of the

local size — this is done by performing arithmetic operations

between tuning parameters and constants which cannot be

expressed in CLTune (see Section III). In contrast, ATF allows

to express the global and local size as common arithmetic

expressions that may contain tuning parameters and, conse-

quently, to use the global and local size that CLBlast uses

for its XgemmDirect kernel. Thus, in our ATF program,

we can refrain from CLTune’s constraints for the global and

local size, which enables ATF to generate and explore a larger

search space of valid configurations. The larger search space

leads to better tuning results for XgemmDirect since it

comprises configurations that provide high performance and

are not comprised by CLTune’s search space. For example, in

case of the input size IS4, the larger search space improves

ATF’s speedup from 12.85× to 17.60× on the CPU, and from

2.89× to 3.62× on the GPU.

B. ATF vs. OpenTuner
In Figure 2, comparing ATF and OpenTuner, we can observe

that ATF speedups the XgemmDirect kernel by factors

70

from 1.98× to 5.31× on the CPU (left), and by factors

from 1.20× to 1.65× on the GPU (right). This is because

OpenTuner is optimized for unconstrained search spaces and,

thus, is not able to find a valid configuration even after

10, 000 evaluated configurations, since valid configurations

make only a tiny fraction of XgemmDirect’s search space.

For example, for the input size IS 4, the unconstrained search

space of OpenTuner has a size of 1013 while the number

of valid configurations is 106— it corresponds exactly to the

constrained search space of ATF which cannot be expressed

in OpenTuner — i.e., the probability of choosing a valid

configuration is 10−7. Consequently, OpenTuner is not suitable

for auto-tuning the XgemmDirect kernel, and the kernel has

to rely on its tuning parameters’ default values which are

neither optimized for the target device nor for the input size;

they are chosen to yield a good performance on average on

various devices and for different input sizes.

Surprisingly, in most cases, XgemmDirect’s performance

is better when using its default tuning parameter values as

compared to using its device-optimized tuning parameter val-

ues that CLBlast has determined with CLTune. This is because

the default parameter values are small, e.g., WGD=8 and

KWID=1, causing a high parallelization of XgemmDirect
for the special input sizes as used in deep learning.

VII. CONCLUSION

In this paper, we present ATF — a highly generic frame-

work for program auto-tuning that has several advantages as

compared to the state-of-the-art approaches. ATF can auto-

tune programs which are written in an arbitrary programming

language and which belong to an arbitrary application do-

main; tuning parameters may be interdependent. The user can

auto-tune for an arbitrary objective (e.g., high runtime per-

formance and/or low energy consumption) and choose among

three pre-implemented search techniques, thus targeting search

spaces of different size. For domain-specific user requirements,

ATF can be easily extended by further search techniques. We

demonstrate that ATF is easy to use, thus making auto-tuning

appealing to common application developers. Our experimen-

tal results show that ATF provides better tuning results for

General Matrix Multiplication (GEMM) written in OpenCL

compared to CLTune which is currently used for auto-tuning

GEMM in OpenCL on important input sizes as used in the

application area of deep learning.

ACKNOWLEDGEMENTS

This work has been supported by the BMBF project

HPC2SE and the DFG Cluster CiM. We thank NVIDIA Corp.

for donating the hardware used in our experiments.

REFERENCES

[1] Ansel J, Kamil S et al. (2014) OpenTuner: An Extensible

Framework for Program Autotuning. In: Proc. of the 23rd

Int. Conf. on Parallel Architectures and Compilation,

ACM, pp 303–316

[2] Beckingsale D, Pearce O et al.(2017) Apollo: Reusable

Models for Fast, Dynamic Tuning of Input-Dependent

Code. In: 2017 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), pp 307–316

[3] Bruel P, Amars M et al. (2017) Autotuning CUDA Com-

piler Parameters for Heterogeneous Applications using

the OpenTuner Framework. Concurrency and Computa-

tion: Practice and Experience pp 1–13

[4] Cedric Nugteren (2016) CLTune Issue 48. URL

github.com/CNugteren/CLTune/issues/48

[5] Chen C, Chame J et al. (2008) CHiLL: A Framework

for Composing High-Level Loop Transformations. Tech.

rep., Technical Report 08-897, U. of Southern California

[6] Christen M, Schenk O et al. (2011) PATUS: A Code Gen-

eration and Autotuning Framework For Parallel Iterative

Stencil Computations on Modern Microarchitectures. In:

Parallel & Distributed Processing Symposium (IPDPS),

2011 IEEE International, IEEE, pp 676–687

[7] Fursin G, Kashnikov Y et al (2011) Milepost GCC:

Machine Learning Enabled Self-tuning Compiler. Inter-

national Journal of Parallel Programming 39(3):296–327

[8] Hartono A, Norris B et al. (2009) Annotation-Based

Empirical Performance Tuning Using Orio. In: Parallel

& Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on, IEEE, pp 1–11

[9] Jason Jansel (2016) OpenTuner Issue 87. URL

github.com/jansel/opentuner/issues/87

[10] Jia Y, Shelhamer E et al. (2014) Caffe: Convolutional Ar-

chitecture for Fast Feature Embedding . In: Proceedings

of the 22nd ACM international conference on Multime-

dia, ACM, pp 675–678

[11] Khronos OpenCL Working Group (2017)

The OpenCL Specification. URL khronos.org/opencl/

[12] Kirkpatrick S, Gelatt CD et al (1983) Optimization by

Simulated Annealing. Science 220(4598):671–680

[13] Netlib (2016) BLAS. URL netlib.org/blas/

[14] Nickolls J, Buck I et al. (2008) Scalable Parallel Pro-

gramming With CUDA. Queue 6(2):40–53

[15] Nugteren C (2017) CLBlast: A Tuned OpenCL BLAS

Library. arXiv preprint arXiv:170505249

[16] Nugteren C, Codreanu V (2015) CLTune: A Generic

Auto-Tuner for OpenCL Kernels. In: Embedded

Multicore/Many-core Systems-on-Chip (MCSoC), IEEE,

pp 195–202

[17] NVIDIA (2017) NVRTC. URL

docs.nvidia.com/cuda/nvrtc/

[18] Python Software Foundation (2017) Python Embedding

API. URL docs.python.org

[19] Ţăpuş C, Chung IH et al (2002) Active Harmony: To-

wards Automated Performance Tuning. In: Proceedings

of the 2002 ACM/IEEE conference on Supercomputing,

IEEE Computer Society Press, pp 1–11

[20] Whaley RC, Dongarra JJ (1998) Automatically Tuned

Linear Algebra Software. In: Proc. of the 1998

ACM/IEEE Conf. on Supercomputing, IEEE Computer

Society, pp 1–27

71

